login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of n where the largest part is less than or equal to the number of parts.
9

%I #20 Oct 01 2021 11:41:43

%S 1,1,1,3,5,11,23,48,98,204,421,863,1766,3606,7341,14913,30233,61175,

%T 123589,249344,502443,1011366,2033894,4086975,8206833,16469875,

%U 33035611,66234372,132745859,265961487,532717894,1066778687,2135822457,4275459730,8557335141,17125445575,34268965676,68568213419,137187103849,274458924246

%N Number of compositions of n where the largest part is less than or equal to the number of parts.

%H <a href="/index/Com#comp">Index entries for sequences related to compositions</a>

%F G.f.: 1 + sum(k>=0, ((x^(k+1)-x)/(x-1))^k ). - _Vladeta Jovovic_, Sep 24 2004

%F G.f.: 1 + sum(n>=1, q^n * ( (1-q^n)/(1-q) )^n ), the g.f. above, slightly rewritten. [_Joerg Arndt_, Mar 30 2014]

%F a(n) ~ 2^(n-1). - _Vaclav Kotesovec_, May 01 2014

%F a(n) = A098124(n)+A098125(n). - _R. J. Mathar_, Oct 01 2021

%e a(5)=11 since 5 can be written as 1+1+1+1+1, 1+1+1+2, 1+1+2+1, 1+1+3, 1+2+1+1, 1+2+2, 1+3+1, 2+1+1+1, 2+1+2, 2+2+1, or 3+1+1; but not as 2+3 since then the largest part (3) would be greater than the number of parts (2).

%t Table[SeriesCoefficient[1 + Sum[x^k*((1-x^k)/(1-x))^k,{k,1,n}],{x,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, May 01 2014 *)

%Y Row sums of A077227.

%Y Cf. A064174, A348125.

%K nonn

%O 0,4

%A _Henry Bottomley_, Oct 29 2002

%E More terms from _Vladeta Jovovic_, Sep 24 2004

%E Prepended a(0) = 1, _Joerg Arndt_, Mar 30 2014