login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256275
Decimal equivalent of the binary string generated by the negation of the n X n identity matrix.
1
0, 6, 238, 31710, 16510910, 34089189246, 280371153272574, 9205322385119247870, 1207744073945406663293950, 633515663914742881158342637566, 1328903397983747395279166325955489790, 11149011303623843458013522930838119932485630, 374121581799746201009538413109130562019709006364670
OFFSET
1,2
LINKS
FORMULA
a(n) = 2^(n^2) - (1 + (2^((n+1)*(n-1)) + 2^((n+1)*(n-2) + .. 1))).
a(n) = 2^(n^2) - (1 + A119408(n)).
a(n) = ((2^(n^2) - 2)*(2^n - 1))/(2*2^n - 1)
EXAMPLE
For n = 3, a(3) = 2^(3^2) - (1 + (2^((3+1)*(3-1)) + 2^((3+1)*(3-2)) + 2^((3+1)*(3-3)))) = 2^9 - (1 + (2^8 + 2^4 + 2^0)) = 512 - (1 + (256 + 16 + 1)) = 512 - 274 = 238.
MAPLE
seq((2^(n^2)-2)*(1-2^n)/(1-2^(n+1)), n=1..26); # Robert Israel, Jun 02 2015
MATHEMATICA
Table[2^(n^2) - (1 + Sum[2^((n + 1) (n - k)), {k, n}]), {n, 12}] (* Michael De Vlieger, Jun 02 2015 *)
PROG
(Mathcad) 2^(n^2) - (1 + Summation[k=1..n (2^((n+1).(n-k)))])
(Magma) [(2^(n^2)-2)*(1-2^n)/(1-2^(n+1)): n in [1..15]]; // Vincenzo Librandi, Jun 03 2015
CROSSREFS
Cf. A119408.
Sequence in context: A362733 A266657 A145180 * A235346 A077231 A172965
KEYWORD
nonn
AUTHOR
Stuart Bruff, Jun 02 2015
STATUS
approved