The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A256273 Decimal expansion of Integral_{0..infinity} exp(-x^2)*cosh(sqrt(1+x^2)) dx. 2
 1, 6, 6, 1, 0, 9, 5, 8, 4, 5, 5, 4, 7, 7, 5, 5, 7, 0, 2, 6, 2, 2, 9, 1, 3, 9, 3, 7, 5, 3, 9, 9, 0, 5, 9, 6, 4, 0, 1, 2, 6, 9, 9, 5, 0, 4, 1, 5, 6, 0, 2, 2, 0, 0, 7, 2, 8, 4, 3, 5, 9, 1, 4, 1, 2, 9, 9, 7, 5, 8, 3, 5, 2, 1, 5, 4, 6, 8, 1, 5, 2, 8, 1, 7, 6, 2, 9, 7, 4, 4, 0, 3, 3, 0, 6, 9, 7, 9, 4, 3, 3, 7, 1, 7, 0 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 Eric Weisstein's MathWorld, Beta Function FORMULA Also equals sqrt(Pi)*Sum_{n>=0} (Sum_{k>=n} (-1)^n*k!/((2*k)!*Beta(n + 1, 1/2 - n)*(k - n)!)), where Beta is the Euler beta function. EXAMPLE 1.661095845547755702622913937539905964012699504156022... MAPLE evalf(Int(exp(-x^2)*cosh(sqrt(1+x^2)), x=0..infinity), 120); # Vaclav Kotesovec, Jun 02 2015 MATHEMATICA NIntegrate[Exp[-x^2]*Cosh[Sqrt[1 + x^2]], {x, 0, Infinity}, WorkingPrecision -> 105] // RealDigits // First CROSSREFS Sequence in context: A346536 A317577 A245173 * A046620 A046619 A021606 Adjacent sequences:  A256270 A256271 A256272 * A256274 A256275 A256276 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Jun 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 20:10 EDT 2021. Contains 347598 sequences. (Running on oeis4.)