login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119408
Decimal equivalent of the binary string generated by the n X n identity matrix.
3
1, 9, 273, 33825, 17043521, 34630287489, 282578800148737, 9241421688590303745, 1210107565283851686118401, 634134936313486520338360567809, 1329552593586084350528447794605199361, 11151733894906779683522195341810241573494785
OFFSET
1,2
COMMENTS
a(n) is divisible by 2^n - 1. a(n) == n mod 2^(n+1) - 1. - Robert Israel, Jun 09 2015
LINKS
FORMULA
a(n) = 2^((n+1)(n-1)) + 2^((n+1)(n-2)) + ... + 1 where n=2,3,...
a(n) = (2^n*2^(n^2)-1)/(2*2^n-1). - Stuart Bruff, Jun 08 2015
EXAMPLE
n=2: [1 0; 0 1] == 1001_2 = 9;
n=3: [1 0 0; 0 1 0; 0 0 1] == 100010001_2 = 273;
n=4: [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 1] == 1000010000100001_2 = 33825.
MATHEMATICA
For[n=2, n<=10, Print[n, " ", Sum[2^((n+1)(k-1)), {k, 1, n}]]; n++ ]
Table[FromDigits[Flatten[IdentityMatrix[n]], 2], {n, 15}] (* Harvey P. Dale, Dec 31 2021 *)
PROG
(MATLAB) for n = 1:10 bi2de((reshape(eye(n), length(eye(n))^2, 1))') end
% Kyle Stern, Dec 14 2011
(PARI) a(n)=(2^n*2^(n^2)-1)/(2*2^n-1) \\ Charles R Greathouse IV, Jun 09 2015
CROSSREFS
Cf. A128889.
Sequence in context: A197981 A188812 A197768 * A295898 A330604 A336259
KEYWORD
nonn,base
AUTHOR
Lynn R. Purser, Jul 25 2006
STATUS
approved