The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A330604 a(n) = Sum_{k>=0} (n*k - 1)^n / 2^(k + 1). 1
1, 0, 9, 278, 16145, 1471774, 194652577, 35275961958, 8397548586177, 2542220603893358, 954003495852753401, 434683708245705663766, 236409592518584290327249, 151286889086525353482149022, 112534788142976814403622739921, 96285847680519841273313314779974 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * [x^n] exp(-x) / (2 - exp(n*x)).
a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * n^k * A000670(k).
a(n) ~ n^n * n! / (2 * (log(2))^(n+1)). - Vaclav Kotesovec, Dec 19 2019
MATHEMATICA
Table[Sum[(n k - 1)^n/2^(k + 1), {k, 0, Infinity}], {n, 0, 15}]
Join[{1}, Table[n^n HurwitzLerchPhi[1/2, -n, -1/n]/2, {n, 1, 15}]]
Table[n! SeriesCoefficient[Exp[-x]/(2 - Exp[n x]), {x, 0, n}], {n, 0, 15}]
CROSSREFS
Sequence in context: A197768 A119408 A295898 * A336259 A177107 A346187
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 19 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 10:19 EDT 2024. Contains 373407 sequences. (Running on oeis4.)