login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A336259
a(0) = 1; a(n) = (n!)^3 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^3.
6
1, 1, 9, 278, 20464, 2948824, 735078968, 291153023664, 172201253334528, 145044581320046592, 167609226267379703808, 257816558769660828601344, 514890814087717253133447168, 1307445058678686737908660752384, 4146656933568759002389401276616704
OFFSET
0,3
LINKS
FORMULA
a(n) = (n!)^3 * [x^n] 1 / (1 - polylog(3,x)).
a(n) ~ (n!)^3 / (polylog(2,r) * r^n), where r = 0.86512013798076629268795131756... is the root of the equation polylog(3,r) = 1. - Vaclav Kotesovec, Jul 15 2020
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-i)/i^3, i=1..n))
end:
a:= n-> n!^3*b(n):
seq(a(n), n=0..14); # Alois P. Heinz, Jan 04 2024
MATHEMATICA
a[0] = 1; a[n_] := a[n] = (n!)^3 Sum[a[k]/(k! (n - k))^3, {k, 0, n - 1}]; Table[a[n], {n, 0, 14}]
nmax = 14; CoefficientList[Series[1/(1 - PolyLog[3, x]), {x, 0, nmax}], x] Range[0, nmax]!^3
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 15 2020
STATUS
approved