Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jan 04 2024 19:11:08
%S 1,1,9,278,20464,2948824,735078968,291153023664,172201253334528,
%T 145044581320046592,167609226267379703808,257816558769660828601344,
%U 514890814087717253133447168,1307445058678686737908660752384,4146656933568759002389401276616704
%N a(0) = 1; a(n) = (n!)^3 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^3.
%H Alois P. Heinz, <a href="/A336259/b336259.txt">Table of n, a(n) for n = 0..180</a>
%F a(n) = (n!)^3 * [x^n] 1 / (1 - polylog(3,x)).
%F a(n) ~ (n!)^3 / (polylog(2,r) * r^n), where r = 0.86512013798076629268795131756... is the root of the equation polylog(3,r) = 1. - _Vaclav Kotesovec_, Jul 15 2020
%p b:= proc(n) option remember; `if`(n=0, 1,
%p add(b(n-i)/i^3, i=1..n))
%p end:
%p a:= n-> n!^3*b(n):
%p seq(a(n), n=0..14); # _Alois P. Heinz_, Jan 04 2024
%t a[0] = 1; a[n_] := a[n] = (n!)^3 Sum[a[k]/(k! (n - k))^3, {k, 0, n - 1}]; Table[a[n], {n, 0, 14}]
%t nmax = 14; CoefficientList[Series[1/(1 - PolyLog[3, x]), {x, 0, nmax}], x] Range[0, nmax]!^3
%Y Cf. A007840, A193436, A336195, A336258, A336260, A336261.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Jul 15 2020