The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119407 Number of nonempty subsets of {1,2,...,n} with no gap of length greater than 4 (a set S has a gap of length d if a and b are in S but no x with a < x < b is in S, where b-a=d). 3
 1, 3, 7, 15, 31, 62, 122, 238, 462, 894, 1727, 3333, 6429, 12397, 23901, 46076, 88820, 171212, 330028, 636156, 1226237, 2363655, 4556099, 8782171, 16928187, 32630138, 62896622, 121237146, 233692122, 450456058, 868281979, 1673667337, 3226097529, 6218502937, 11986549817, 23104817656 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The numbers of subsets of {1,2,...,n} with no gap of length greater than d, for d=1,2 and 3, seem to be given in A000217, A001924 and A062544, respectively. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (3,-2,0,0,-1,1). FORMULA G.f. for number of nonempty subsets of {1,2,...,n} with no gap of length greater than d is x/((1-x)*(1-2*x+x^(d+1))). - Vladeta Jovovic, Apr 27 2008 From Michael Somos, Dec 28 2012: (Start) G.f.: x/((1-x)^2*(1-x-x^2-x^3-x^4)) = x/((1-x)*(1-2*x+x^5)). First difference is A107066. (End) a(n-3) = Sum_{k=0..n} (n-k)*A000078(k) for n>3. - Greg Dresden, Jan 01 2021 EXAMPLE G.f. = x + 3*x^2 + 7*x^3 + 15*x^4 + 31*x^5 + 62*x^6 + 122*x^7 + 238*x^8 + 462*x^9 + ... MATHEMATICA Rest@CoefficientList[Series[x/((1-x)*(1-2*x+x^5)), {x, 0, 40}], x] (* G. C. Greubel, Jun 05 2019 *) LinearRecurrence[{3, -2, 0, 0, -1, 1}, {1, 3, 7, 15, 31, 62}, 40] (* Harvey P. Dale, Dec 04 2019 *) PROG (PARI) {a(n) = if( n<0, n = -n; polcoeff( x^5 / ((1 - x)^2 * (1 + x + x^2 + x^3 - x^4)) + x * O(x^n), n), polcoeff( x / ((1 - x)^2 * (1 - x - x^2 - x^3 - x^4)) + x * O(x^n), n))} /* Michael Somos, Dec 28 2012 */ (PARI) my(x='x+O('x^40)); Vec(x/((1-x)*(1-2*x+x^5))) \\ G. C. Greubel, Jun 05 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x/((1-x)*(1-2*x+x^5)) )); // G. C. Greubel, Jun 05 2019 (Sage) a=(x/((1-x)*(1-2*x+x^5))).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jun 05 2019 CROSSREFS Cf. A000217, A001924, A062544, A107066. Sequence in context: A218281 A057703 A006739 * A224521 A269167 A261586 Adjacent sequences:  A119404 A119405 A119406 * A119408 A119409 A119410 KEYWORD nonn AUTHOR John W. Layman, Jul 25 2006 EXTENSIONS Terms a(25) onward added by G. C. Greubel, Jun 05 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 16:32 EDT 2021. Contains 347487 sequences. (Running on oeis4.)