login
A062544
a(n) = n plus sum of previous three terms.
7
0, 1, 3, 7, 15, 30, 58, 110, 206, 383, 709, 1309, 2413, 4444, 8180, 15052, 27692, 50941, 93703, 172355, 317019, 583098, 1072494, 1972634, 3628250, 6673403, 12274313, 22575993, 41523737, 76374072, 140473832, 258371672, 475219608, 874065145, 1607656459, 2956941247
OFFSET
0,3
COMMENTS
It appears that this is the number of nonempty subsets of {1,2,...,n} with no gap of length greater than 3 (a set S has a gap of length d if a and b are in S but no x with a<x<b is in S, where b-a=d). See A119407 for the corresponding problem for gaps of length 4. - John W. Layman, Nov 02 2011
a(n-3) is the number of compositions of n with no part divisible by 3 and an odd number of parts congruent to 4 or 5 modulo 6. See Moser & Whitney reference. a(2) = 3 counts (5), (4,1), and (1,4) among the compositions of 5. - Brian Hopkins, Sep 06 2019
LINKS
Zuwen Luo and Kexiang Xu, The number of connected sets in Apollonian networks, Applied Mathematics and Computation, Volume 479, 2024. On ResearchGate. See p. 12.
L. Moser and E. L. Whitney, Weighted compositions, Canad. Math. Bull. 4 (1961), 39-43.
FORMULA
a(n) = 3*a(n-1) - 2*a(n-2) - 1*a(n-4) + 1*a(n-5). - Joerg Arndt, Apr 02 2011
a(n) = n + a(n-1) + a(n-2) + a(n-3) =(A001590(n+4) - n - 3)/2.
G.f.: x / ((1 - x) * (1 - 2*x + x^4)). a(n) = 2*a(n-1) - a(n-4) + 1. - Michael Somos, Dec 28 2012
a(n) = A325473(n+3) - (n+3). - Brian Hopkins, Sep 06 2019
EXAMPLE
a(5) = 5 + 15 + 7 + 3 = 30.
x + 3*x^2 + 7*x^3 + 15*x^4 + 30*x^5 + 58*x^6 + 110*x^7 + 206*x^8 + 383*x^9 + ...
MATHEMATICA
Join[{c=0}, a=b=0; Table[z=b+a+c+n; a=b; b=c; c=z, {n, 1, 40}]] (* Vladimir Joseph Stephan Orlovsky, Apr 02 2011 *)
PROG
(PARI) { a=a1=a2=a3=0; for (n=0, 300, write("b062544.txt", n, " ", a+=n + a2 + a3); a3=a2; a2=a1; a1=a ) } \\ Harry J. Smith, Aug 08 2009
(PARI) {a(n) = if( n<0, n = -n; polcoeff( x^4 / ((1 - x) * (1 - 2*x^3 + x^4)) + x * O(x^n), n), polcoeff( x / ((1 - x) * (1 - 2*x + x^4)) + x * O(x^n), n))} /* Michael Somos, Dec 28 2012 */
CROSSREFS
n plus sum of all previous terms gives A000225, n plus sum of two previous terms gives A001924, n plus previous term gives A000217, n gives A001477.
Cf. A001590 and A325473.
Sequence in context: A209816 A182726 A023610 * A120411 A350606 A224520
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 26 2001
STATUS
approved