login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is smallest natural number satisfying Pell equation b^2- d(n)*a^2= +1 or = -1, with d(n)=A000037(n) (nonsquare). Corresponding smallest b(n)=A077232(n).
5

%I #22 Mar 10 2021 08:24:51

%S 1,1,1,2,3,1,1,3,2,5,4,1,1,4,39,2,12,42,5,1,1,5,24,13,2,273,3,4,6,1,1,

%T 6,4,3,5,2,531,30,24,3588,7,1,1,7,90,25,66,12,2,20,13,69,4,3805,8,1,1,

%U 8,5967,4,936,30,413,2,125,5,3,6630,40,6,9,1,1,9,6,41,1122,3,21,53,2,165,120,1260,221064,4,5,569,10,1,1,10,22419

%N a(n) is smallest natural number satisfying Pell equation b^2- d(n)*a^2= +1 or = -1, with d(n)=A000037(n) (nonsquare). Corresponding smallest b(n)=A077232(n).

%C If d(n)=A000037(n) is from A003654 (that is if the regular continued fraction for sqrt(d(n)) has odd (primitive) period length) then the -1 option applies. For such d(n) the minimal b(n) and a(n) numbers for the +1 option are 2*b(n)^2 + 1 and 2*b(n)*a(n), respectively (see Perron I, pp. 94,p5).

%C For general integer solutions see A077232 comments.

%C If the trivial solution x=1, y=0 is included, the sequence becomes A006703. - _T. D. Noe_, May 17 2007

%D T. Nagell, "Introduction to Number Theory", Chelsea Pub., New York, 1964, table p. 301.

%D O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 26, p. 91 with explanation on pp. 94,95).

%H Ray Chandler, <a href="/A077233/b077233.txt">Table of n, a(n) for n = 1..10000</a>

%H A. M. Legendre, <a href="https://books.google.fr/books?id=EBtPMqDlPxcC&amp;pg=PA517">Fractions les plus simples m/n qui satisfont à l'équation m^2 - an^2 =+-1 pour tout nombre non quarré a depuis 2 jusqu'à 1003</a>, Essai sur la Théorie des Nombres An VI, Table XII. [_Paul Curtz_, Apr 10 2019]

%F a(n)=sqrt((A077232(n)^2 - (-1)^(c(n)))/A000037(n)) with c(n)=1 if A000037(n)=A003654(k) for some k>=1 else c(n)=0.

%e d=10=A000037(7)=A003654(3), therefore a(7)=1 and b(7)=A077232(7)=3 give 3^2=10*1^2 -1 and 2*b(7)^2+1=19 and 2*b(7)*a(7)=2*3*1=6 satisfy 19^2 - 10*6^2 = +1.

%e d=11=A000037(8) is not in A003654, therefore there is no (nontrivial) solution of the b^2 - d*a^2 = -1 Pell equation and a(8)=3 and b(8)=A077232(8)=10 satisfy 10^2 - 11*3^2 = +1. See A077232 for further examples.

%t nmax = 500;

%t nconv = 200; (* The number of convergents 'nconv' should be increased if the linear recurrence is not found for some terms. *)

%t nonSquare[n_] := n + Round[Sqrt[n]];

%t b[n_] := b[n] = Module[{lr}, lr = FindLinearRecurrence[ Numerator[ Convergents[ Sqrt[nonSquare[n]], nconv]]]; (1/2) SelectFirst[lr, #>1&]];

%t a[n_] := If[n == 1, 1, SelectFirst[{Sqrt[(b[n]^2 - 1)/nonSquare[n]], Sqrt[(b[n]^2 + 1)/nonSquare[n]]}, IntegerQ]];

%t Table[Print[n, " ", a[n]]; a[n], {n, 1, nmax}] (* _Jean-François Alcover_, Mar 10 2021 *)

%Y Cf. A000037, A003654, A003814, A033317, A077232.

%K nonn,nice

%O 1,4

%A _Wolfdieter Lang_, Nov 08 2002