The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003814 Numbers n such that the continued fraction for sqrt(n) has odd period length (values of n). 15
 2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 125, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 250, 257, 265, 269, 274, 277, 281, 290, 293, 298, 313, 314, 317 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All primes of the form 4k + 1 are here. - T. D. Noe, Mar 19 2012 These numbers have no prime factors of the form 4k + 3. - Thomas Ordowski, Jul 01 2013 This sequence is a proper subsequence of the so-called 1-happy number products A007969. See the W. Lang link there, eq. (1), with B = 1, C = a(n), also with a table at the end. This is due to the soluble Pell equation R^2 - C*S^2 = -1 for C = a(n). See e.g., Perron, Satz 3.18. on p. 93, and the table on p. 91 with the numbers D of the first column that do not have a number in brackets in the second column (Teilnenner von sqrt(D)). - Wolfdieter Lang, Sep 19 2015 REFERENCES O. Perron, Die Lehre von den Kettenbrüchen, Band I, Teubner Verlagsgesellschaft, Stuttgart, 1954. Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors!). LINKS T. D. Noe and Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe) S. R. Finch, Class number theory [Cached copy, with permission of the author] P. J. Rippon and H. Taylor, Even and odd periods in continued fractions of square roots, Fibonacci Quarterly 42, May 2004, pp. 170-180. MAPLE isA003814 := proc(n)     local cf, p ;     if issqr(n) then         return false;     end if;     for p in numtheory[factorset](n) do         if modp(p, 4) = 3 then             return false;         end if;     end do:     cf := numtheory[cfrac](sqrt(n), 'periodic', 'quotients') ;     type( nops(op(2, cf)), 'odd') ; end proc: A003814 := proc(n)     option remember;     if n = 1 then         2;     else         for a from procname(n-1)+1 do             if isA003814(a) then                 return a;             end if;         end do:     end if; end proc: seq(A003814(n), n=1..40) ; # R. J. Mathar, Oct 19 2014 MATHEMATICA Select[Range, ! IntegerQ[Sqrt[#]] && OddQ[Length[ContinuedFraction[Sqrt[#]][]]] &] (* T. D. Noe, Mar 19 2012 *) PROG (PARI) cyc(cf) = {   if(#cf==1, return([])); \\ There is no cycle   my(s=[]);   for(k=2, #cf,     s=concat(s, cf[k]);     if(cf[k]==2*cf, return(s)) \\ Cycle found   );   0 \\ Cycle not found } select(n->#cyc(contfrac(sqrt(n)))%2==1, vector(400, n, n)) \\ Colin Barker, Oct 19 2014 CROSSREFS Cf. A010333, A003654, A007969. Cf. A031396. Cf. A206586 (period has positive even length). Sequence in context: A281292 A145017 A031396 * A003654 A271787 A047617 Adjacent sequences:  A003811 A003812 A003813 * A003815 A003816 A003817 KEYWORD nonn AUTHOR N. J. A. Sloane, Walter Gilbert STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 19:28 EDT 2021. Contains 345038 sequences. (Running on oeis4.)