login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4*a(n-1) - a(n-2), a(0)=1, a(1)=6.
11

%I #48 Sep 08 2022 08:45:01

%S 1,6,23,86,321,1198,4471,16686,62273,232406,867351,3236998,12080641,

%T 45085566,168261623,627960926,2343582081,8746367398,32641887511,

%U 121821182646,454642843073,1696750189646,6332357915511,23632681472398

%N a(n) = 4*a(n-1) - a(n-2), a(0)=1, a(1)=6.

%C Bisection (even part) of Chebyshev sequence with Diophantine property.

%C The odd part is A077234 with Diophantine companion A077235.

%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.

%H G. C. Greubel, <a href="/A054491/b054491.txt">Table of n, a(n) for n = 0..1000</a>

%H I. Adler, <a href="http://www.fq.math.ca/Scanned/7-2/adler.pdf">Three Diophantine equations - Part II</a>, Fib. Quart., 7 (1969), pp. 181-193.

%H E. I. Emerson, <a href="http://www.fq.math.ca/Scanned/7-3/emerson.pdf">Recurrent Sequences in the Equation DQ^2=R^2+N</a>, Fib. Quart., 7 (1969), pp. 231-242.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-1).

%F -3*a(n)^2 + A077236(n)^2 = 13.

%F a(n) = ( 6*((2+sqrt(3))^n-(2-sqrt(3))^n) - ((2+sqrt(3))^(n-1)-(2-sqrt(3))^(n-1)) )/(2*sqrt(3)).

%F a(n) = 6*S(n-1, 4) - S(n-2, 4) = S(n, 4) + 2*S(n-1, 4), with S(n, x) := U(n, x/2) Chebyshev's polynomials of 2nd kind, A049310. S(-1, x) := 0, S(-2, x) := -1, S(n, 4)= A001353(n+1).

%F G.f.: (1+2*x)/(1-4*x+x^2).

%F a(n+1) = A001353(n+2) + 2*A001353(n+1) - _Creighton Dement_, Nov 28 2004. Comment from _Vim Wenders_, Mar 26 2008: This is easily verified using a(n) = (6*( (2+sqrt(3))^n - (2-sqrt(3))^n ) - ( (2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1) ))/(2*sqrt(3)) and A001353(n) = ( (2+sqrt(3))^n - (2-sqrt(3))^n )/(2*sqrt(3)).

%F a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-7)^k. - _Philippe Deléham_, Mar 05 2014

%F E.g.f.: (1/3)*exp(2*x)*(3*cosh(sqrt(3)*x) + 4*sqrt(3)*sinh(sqrt(3)*x)). - _Stefano Spezia_, Jan 27 2020

%p seq( simplify(ChebyshevU(n,2) +2*ChebyshevU(n-1,2)), n=0..30); # _G. C. Greubel_, Jan 15 2020

%t Table[ChebyshevU[n, 2] +2*ChebyshevU[n-1, 2], {n,0,30}] (* _G. C. Greubel_, Jan 15 2020 *)

%t LinearRecurrence[{4,-1},{1,6},30] (* _Harvey P. Dale_, Sep 04 2021 *)

%o (PARI) a(n) = if (n==0, 1, if (n==1, 6, 4*a(n-1)-a(n-2))) \\ _Michel Marcus_, Jun 23 2013

%o (PARI) a(n) = polchebyshev(n, 2, 2) + 2*polchebyshev(n-1, 2, 2); \\ _Michel Marcus_, Oct 13 2021

%o (Magma) I:=[1,6]; [n le 2 select I[n] else 4*Self(n-1) -Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 15 2020

%o (Sage) [chebyshev_U(n,2) +2*chebyshev_U(n-1,2) for n in (0..30)]; # _G. C. Greubel_, Jan 15 2020

%o (GAP) a:=[1,6];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Jan 15 2020

%Y Cf. A001353, A001834, A077234, A077235.

%K easy,nonn

%O 0,2

%A _Barry E. Williams_, May 04 2000

%E Chebyshev comments from _Wolfdieter Lang_, Nov 08 2002