login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A054489
Expansion of (1+4*x)/(1-6*x+x^2).
7
1, 10, 59, 344, 2005, 11686, 68111, 396980, 2313769, 13485634, 78600035, 458114576, 2670087421, 15562409950, 90704372279, 528663823724, 3081278570065, 17959007596666, 104672767009931, 610077594462920
OFFSET
0,2
COMMENTS
Numbers n such that 8*n^2 + 41 is a square.
(x, y) = (a(n), a(n+1)) are solutions to x^2 + y^2 - 6*x*y = 41. - John O. Oladokun, Mar 17 2021
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.
LINKS
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = 6*a(n-1) - a(n-2), a(0)=1, a(1)=10.
a(n) = (10*((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) - ((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1)))/(4*sqrt(2)).
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = ChebyshevU(n,3) + 4*ChebyshevU(n-1,3).
a(n) = (Pell(2*n+2) + 4*Pell(2*n))/2 = (Pell-Lucas(2*n+1) + 3*Pell(2*n))/2.
E.g.f.: exp(3*x)*( cosh(2*sqrt(2)*x) + 7*sinh(2*sqrt(2)*x)/(2*sqrt(2)) ). (End)
MAPLE
a[0]:=1: a[1]:=10: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..19); # Zerinvary Lajos, Jul 26 2006
MATHEMATICA
Table[(LucasL[2*n+1, 2] + 3*Fibonacci[2*n, 2])/2, {n, 0, 30}] (* G. C. Greubel, Jan 19 2020 *)
LinearRecurrence[{6, -1}, {1, 10}, 20] (* Harvey P. Dale, Jun 11 2024 *)
PROG
(PARI) vector(31, n, polchebyshev(n-1, 2, 3) +4*polchebyshev(n-2, 2, 3) ) \\ G. C. Greubel, Jan 19 2020
(Magma) I:=[1, 10]; [n le 2 select I[n] else 6*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 19 2020
(Sage) [chebyshev_U(n, 3) +4*chebyshev_U(n-1, 3) for n in (0..30)] # G. C. Greubel, Jan 19 2020
(GAP) a:=[1, 10];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 19 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 04 2000
EXTENSIONS
More terms from James A. Sellers, May 05 2000
STATUS
approved