login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A014524
Number of Hamiltonian paths from NW to SW corners in a grid with 2n rows and 4 columns.
5
0, 1, 8, 47, 264, 1480, 8305, 46616, 261663, 1468752, 8244304, 46276385, 259755560, 1458042831, 8184190168, 45938958232, 257861540369, 1447411446840, 8124514782015, 45603992276896, 255981331487648
OFFSET
0,3
FORMULA
From Colin Barker, May 20 2013: (Start)
a(n) = 7*a(n-1)-9*a(n-2)+7*a(n-3)-a(n-4).
G.f.: x*(x+1)/(x^4-7*x^3+9*x^2-7*x+1). (End)
EXAMPLE
Illustration of a(1)=1:
.__.__.__.
.__.__.__|
Illustration of a few of the 8 solutions to a(2):
.__.__.__. . .__.__. . .__.__. .__.__.__.
.__.__. | | | .__| |__| .__| .__.__.__|
|__ | | |__| |__. .__. |__. |__.__.__.
.__| |__| .__.__.__| | |__.__| .__.__.__|
MATHEMATICA
CoefficientList[Series[x (x + 1)/(x^4 - 7 x^3 + 9 x^2 - 7 x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)
CROSSREFS
Even bisection of column 4 of A271592.
Sequence in context: A051140 A296631 A255720 * A098891 A054488 A034349
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Name clarified by Andrew Howroyd, Apr 10 2016
STATUS
approved