login
A014524
Number of Hamiltonian paths from NW to SW corners in a grid with 2n rows and 4 columns.
5
0, 1, 8, 47, 264, 1480, 8305, 46616, 261663, 1468752, 8244304, 46276385, 259755560, 1458042831, 8184190168, 45938958232, 257861540369, 1447411446840, 8124514782015, 45603992276896, 255981331487648
OFFSET
0,3
FORMULA
From Colin Barker, May 20 2013: (Start)
a(n) = 7*a(n-1)-9*a(n-2)+7*a(n-3)-a(n-4).
G.f.: x*(x+1)/(x^4-7*x^3+9*x^2-7*x+1). (End)
EXAMPLE
Illustration of a(1)=1:
.__.__.__.
.__.__.__|
Illustration of a few of the 8 solutions to a(2):
.__.__.__. . .__.__. . .__.__. .__.__.__.
.__.__. | | | .__| |__| .__| .__.__.__|
|__ | | |__| |__. .__. |__. |__.__.__.
.__| |__| .__.__.__| | |__.__| .__.__.__|
MATHEMATICA
CoefficientList[Series[x (x + 1)/(x^4 - 7 x^3 + 9 x^2 - 7 x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2013 *)
CROSSREFS
Even bisection of column 4 of A271592.
Sequence in context: A051140 A296631 A255720 * A098891 A054488 A034349
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Name clarified by Andrew Howroyd, Apr 10 2016
STATUS
approved