|
|
A296631
|
|
Number of nX4 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 0, 2 or 4 neighboring 1s.
|
|
1
|
|
|
8, 47, 260, 1444, 8042, 44783, 249329, 1388229, 7729475, 43036555, 239621114, 1334174859, 7428487720, 41360717708, 230290341396, 1282222463696, 7139224494787, 39750143077200, 221322900803963, 1232293084459751
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 4 of A296635.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 6*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) -12*a(n-5) -13*a(n-6) -35*a(n-7) -71*a(n-8) -45*a(n-9) -44*a(n-10) -32*a(n-11) +137*a(n-12) +173*a(n-13) +348*a(n-14) +548*a(n-15) +479*a(n-16) +558*a(n-17) +379*a(n-18) -59*a(n-19) -286*a(n-20) -697*a(n-21) -1219*a(n-22) -1289*a(n-23) -1428*a(n-24) -1412*a(n-25) -1149*a(n-26) -895*a(n-27) -639*a(n-28) -354*a(n-29) -134*a(n-30) +31*a(n-31) +118*a(n-32) +149*a(n-33) +145*a(n-34) +115*a(n-35) +70*a(n-36) +30*a(n-37) +8*a(n-38) +a(n-39)
|
|
EXAMPLE
|
Some solutions for n=6
..0..0..0..1. .0..1..0..0. .0..0..1..1. .1..0..0..0. .1..1..0..0
..0..1..0..0. .0..0..0..0. .1..0..1..0. .0..0..1..0. .1..0..0..1
..0..0..1..0. .0..0..1..0. .0..0..0..0. .0..0..0..1. .0..0..0..0
..0..1..1..0. .0..0..0..1. .1..0..0..0. .0..1..1..1. .0..0..1..0
..0..0..0..0. .0..0..0..0. .0..1..1..0. .0..1..0..0. .0..0..0..1
..1..0..1..0. .0..0..1..0. .0..1..0..0. .1..1..0..1. .1..0..1..1
|
|
CROSSREFS
|
Cf. A296635.
Sequence in context: A270495 A177257 A051140 * A255720 A014524 A098891
Adjacent sequences: A296628 A296629 A296630 * A296632 A296633 A296634
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Dec 17 2017
|
|
STATUS
|
approved
|
|
|
|