|
|
A270495
|
|
Sum of the sizes of the third blocks in all set partitions of {1,2,...,n}.
|
|
2
|
|
|
1, 8, 47, 253, 1345, 7304, 41193, 243152, 1506521, 9799547, 66844755, 477297022, 3560469469, 27692022408, 224128400923, 1884299045789, 16427961558365, 148293477761232, 1384008870213057, 13336887952918752, 132535336519342301, 1356662080571809755
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,2
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 3..575
Wikipedia, Partition of a set
|
|
MAPLE
|
b:= proc(n, m) option remember; `if`(n=0, [1, 0],
add((p->`if`(j<4, [p[1], p[2]+p[1]*x^j], p))(
b(n-1, max(m, j))), j=1..m+1))
end:
a:= n-> coeff(b(n, 0)[2], x, 3):
seq(a(n), n=3..25);
|
|
MATHEMATICA
|
b[n_, m_] := b[n, m] = If[n == 0, {1, 0}, Sum[Function[p, If[j < 4, {p[[1]], p[[2]] + p[[1]]*x^j}, p]][b[n - 1, Max[m, j]]], {j, 1, m + 1}]];
a[n_] := Coefficient[b[n, 0][[2]], x, 3];
Table[a[n], {n, 3, 25}] (* Jean-François Alcover, May 27 2018, translated from Maple *)
|
|
CROSSREFS
|
Column p=3 of A270236.
Sequence in context: A139262 A026900 A016198 * A177257 A051140 A296631
Adjacent sequences: A270492 A270493 A270494 * A270496 A270497 A270498
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Mar 18 2016
|
|
STATUS
|
approved
|
|
|
|