login
A006864
Number of Hamiltonian cycles in P_4 X P_n.
(Formerly M1603)
6
0, 1, 2, 6, 14, 37, 92, 236, 596, 1517, 3846, 9770, 24794, 62953, 159800, 405688, 1029864, 2614457, 6637066, 16849006, 42773094, 108584525, 275654292, 699780452, 1776473532, 4509783909, 11448608270, 29063617746, 73781357746, 187302518353, 475489124976
OFFSET
1,3
COMMENTS
Wazir tours on a 4 X n grid. There are two closed loops for a 4x4 board, appearing as an H and a C, for example. - Ed Pegg Jr, Sep 07 2010
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
Kwong, Y. H. H.; Enumeration of Hamiltonian cycles in P_4 X P_n and P_5 X P_n. Ars Combin. 33 (1992), 87-96.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
C. Flye Sainte-Marie, Manières différentes de tracer une route fermée ..., L'Intermédiaire des Mathématiciens, vol. 11 (1904), pp. 86-88 (in French).
George Jelliss, Wazir Wanderings
R. Tosic, O. Bodroza, Y. H. Harris Kwong, and H. Joseph Straight, On the number of Hamiltonian cycles of P4 X Pn, Indian J. Pure Appl. Math. 21 (5) (1990), 403-409.
FORMULA
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) + a(n-4).
G.f.: x^2/(1-2x-2x^2+2x^3-x^4). - R. J. Mathar, Dec 16 2008
a(n)=sum ( sum ( binomial(k,j) * sum (binomial(j, i-j)*2^j *binomial(k-j,n-i-3*(k-j))*(-2)^(4*(k-j)-(n-i)), i,j,n-k+j) , j,0,k) , k,1,n ), n>0. - Vladimir Kruchinin, Aug 04 2010
a(n) = Sum_{k=1..n-1} A181688(k). - Kevin McShane, Aug 04 2019
PROG
(Maxima) a(n):=sum ( sum ( binomial(k, j) *sum (binomial(j, i-j)*2^j *binomial(k-j, n-i-3*(k-j))*(-2)^(4*(k-j)-(n-i)), i, j, n-k+j) , j, 0, k) , k, 1, n ); /* Vladimir Kruchinin, Aug 04 2010 */
CROSSREFS
Row/column 4 of A321172.
Sequence in context: A248113 A339985 A026598 * A217420 A071636 A263758
KEYWORD
easy,nonn
AUTHOR
kwong(AT)cs.fredonia.edu (Harris Kwong), N. J. A. Sloane, Simon Plouffe and Frans J. Faase
STATUS
approved