%I #29 Feb 07 2024 12:55:51
%S 0,1,8,47,264,1480,8305,46616,261663,1468752,8244304,46276385,
%T 259755560,1458042831,8184190168,45938958232,257861540369,
%U 1447411446840,8124514782015,45603992276896,255981331487648
%N Number of Hamiltonian paths from NW to SW corners in a grid with 2n rows and 4 columns.
%H Vincenzo Librandi, <a href="/A014524/b014524.txt">Table of n, a(n) for n = 0..1000</a>
%H K. L. Collins and L. B. Krompart, <a href="http://dx.doi.org/10.1016/0012-365X(95)00330-Y">The number of Hamiltonian paths in a rectangular grid</a>, Discrete Math. 169 (1997), 29-38.
%H <a href="/index/Gra#graphs">Index entries for sequences related to graphs, Hamiltonian</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-9,7,-1).
%F From _Colin Barker_, May 20 2013: (Start)
%F a(n) = 7*a(n-1)-9*a(n-2)+7*a(n-3)-a(n-4).
%F G.f.: x*(x+1)/(x^4-7*x^3+9*x^2-7*x+1). (End)
%e Illustration of a(1)=1:
%e .__.__.__.
%e .__.__.__|
%e Illustration of a few of the 8 solutions to a(2):
%e .__.__.__. . .__.__. . .__.__. .__.__.__.
%e .__.__. | | | .__| |__| .__| .__.__.__|
%e |__ | | |__| |__. .__. |__. |__.__.__.
%e .__| |__| .__.__.__| | |__.__| .__.__.__|
%t CoefficientList[Series[x (x + 1)/(x^4 - 7 x^3 + 9 x^2 - 7 x + 1), {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 15 2013 *)
%Y Even bisection of column 4 of A271592.
%Y Cf. A000532, A181688, A014523, A014585, A003695, A006864.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_.
%E Name clarified by _Andrew Howroyd_, Apr 10 2016