The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077240 Bisection (even part) of Chebyshev sequence with Diophantine property. 5
 5, 23, 133, 775, 4517, 26327, 153445, 894343, 5212613, 30381335, 177075397, 1032071047, 6015350885, 35060034263, 204344854693, 1191009093895, 6941709708677, 40459249158167, 235813785240325, 1374423462283783, 8010726988462373, 46689938468490455 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n)^2 - 8*b(n)^2 = 17, with the companion sequence b(n)= A054488(n). The odd part is A077239(n) with Diophantine companion A077413(n). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for sequences related to Chebyshev polynomials. Index entries for linear recurrences with constant coefficients, signature (6,-1). FORMULA a(n) = 6*a(n-1) - a(n-2), a(-1) = 7, a(0) = 5. a(n) = T(n+1, 3)+2*T(n, 3), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 3)= A001541(n). G.f.: (5-7*x)/(1-6*x+x^2). a(n) = (((3-2*sqrt(2))^n*(-4+5*sqrt(2))+(3+2*sqrt(2))^n*(4+5*sqrt(2))))/(2*sqrt(2)). - Colin Barker, Oct 12 2015 EXAMPLE 23 = a(1) = sqrt(8*A054488(1)^2 + 17) = sqrt(8*8^2 + 17)= sqrt(529) = 23. MATHEMATICA Table[ChebyshevT[n+1, 3] + 2*ChebyshevT[n, 3], {n, 0, 19}] (* Jean-François Alcover, Dec 19 2013 *) LinearRecurrence[{6, -1}, {5, 23}, 30] (* Harvey P. Dale, Mar 29 2017 *) PROG (PARI) Vec((5-7*x)/(1-6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015 CROSSREFS Cf. A077242 (even and odd parts). Sequence in context: A009321 A078509 A239820 * A281231 A356010 A244786 Adjacent sequences: A077237 A077238 A077239 * A077241 A077242 A077243 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 18:27 EDT 2023. Contains 365648 sequences. (Running on oeis4.)