This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A077239 Bisection (odd part) of Chebyshev sequence with Diophantine property. 5
 7, 37, 215, 1253, 7303, 42565, 248087, 1445957, 8427655, 49119973, 286292183, 1668633125, 9725506567, 56684406277, 330380931095, 1925601180293, 11223226150663, 65413755723685, 381259308191447, 2222142093424997, 12951593252358535, 75487417420726213 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n)^2 - 8*b(n)^2 = 17, with the companion sequence b(n)= A077413(n). The even part is A077240(n) with Diophantine companion A054488(n). LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (6,-1). FORMULA a(n) = 6*a(n-1) - a(n-2), a(-1) := 5, a(0)=7. a(n) = 2*T(n+1, 3)+T(n, 3), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 3)= A001541(n). G.f.: (7-5*x)/(1-6*x+x^2). a(n) = (((3-2*sqrt(2))^n*(-8+7*sqrt(2))+(3+2*sqrt(2))^n*(8+7*sqrt(2))))/(2*sqrt(2)). - Colin Barker, Oct 12 2015 EXAMPLE 37 = a(1) = sqrt(8*A077413(1)^2 +17) = sqrt(8*13^2 + 17)= sqrt(1369) = 37. MATHEMATICA Table[2*ChebyshevT[n+1, 3] + ChebyshevT[n, 3], {n, 0, 19}]  (* Jean-François Alcover, Dec 19 2013 *) PROG (PARI) Vec((7-5*x)/(1-6*x+x^2) + O(x^40)) \\ Colin Barker, Oct 12 2015 CROSSREFS Cf. A077242 (even and odd parts). Sequence in context: A126475 A274674 A255672 * A046235 A297329 A144496 Adjacent sequences:  A077236 A077237 A077238 * A077240 A077241 A077242 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Nov 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 13:02 EST 2018. Contains 318048 sequences. (Running on oeis4.)