Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Oct 13 2015 01:47:13
%S 7,37,215,1253,7303,42565,248087,1445957,8427655,49119973,286292183,
%T 1668633125,9725506567,56684406277,330380931095,1925601180293,
%U 11223226150663,65413755723685,381259308191447,2222142093424997,12951593252358535,75487417420726213
%N Bisection (odd part) of Chebyshev sequence with Diophantine property.
%C a(n)^2 - 8*b(n)^2 = 17, with the companion sequence b(n)= A077413(n).
%C The even part is A077240(n) with Diophantine companion A054488(n).
%H Colin Barker, <a href="/A077239/b077239.txt">Table of n, a(n) for n = 0..1000</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-1).
%F a(n) = 6*a(n-1) - a(n-2), a(-1) := 5, a(0)=7.
%F a(n) = 2*T(n+1, 3)+T(n, 3), with T(n, x) Chebyshev's polynomials of the first kind, A053120. T(n, 3)= A001541(n).
%F G.f.: (7-5*x)/(1-6*x+x^2).
%F a(n) = (((3-2*sqrt(2))^n*(-8+7*sqrt(2))+(3+2*sqrt(2))^n*(8+7*sqrt(2))))/(2*sqrt(2)). - _Colin Barker_, Oct 12 2015
%e 37 = a(1) = sqrt(8*A077413(1)^2 +17) = sqrt(8*13^2 + 17)= sqrt(1369) = 37.
%t Table[2*ChebyshevT[n+1, 3] + ChebyshevT[n, 3], {n, 0, 19}] (* _Jean-François Alcover_, Dec 19 2013 *)
%o (PARI) Vec((7-5*x)/(1-6*x+x^2) + O(x^40)) \\ _Colin Barker_, Oct 12 2015
%Y Cf. A077242 (even and odd parts).
%K nonn,easy
%O 0,1
%A _Wolfdieter Lang_, Nov 08 2002