login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185080
a(n) = 6 * binomial(2*n,n-1) + binomial(2*n-1,n).
2
7, 27, 100, 371, 1386, 5214, 19734, 75075, 286858, 1100138, 4232592, 16328942, 63146500, 244711260, 950094810, 3694876515, 14390571690, 56122547250, 219140635560, 856617714810, 3351878581740, 13127747882340, 51458942047500, 201869999056206, 792497263436676
OFFSET
1,1
LINKS
FORMULA
a(n) = A046902(2*n,n) (Central terms of Clark's triangle).
a(n) = 6 * A007318(2*n,n-1) + A007318(2*n-1,n).
From G. C. Greubel, Apr 03 2024: (Start)
a(n) = (13*n+1)*A000108(n)/2.
a(n) = (2 + 22*n - 52*n^2)*a(n-1)/(12 - n - 13*n^2).
G.f.: ((6 - 11*x)*sqrt(1-4*x) - (1-4*x)*(6+x))/(2*x*(1-4*x)).
E.g.f.: (1/2)*(-1 + exp(2*x)*(BesselI(0, 2*x) + 12*BesselI(1, 2*x))).(End)
MATHEMATICA
Table[6Binomial[2n, n-1]+Binomial[2n-1, n], {n, 30}] (* Harvey P. Dale, Dec 28 2012 *)
PROG
(Haskell)
a185080 n = 6 * a007318 (2 * n) (n - 1) + a007318 (2 * n - 1) n
(Magma) [(13*n+1)*Catalan(n)/2: n in [1..40]]; // G. C. Greubel, Apr 03 2024
(SageMath) [(13*n+1)*binomial(2*n, n)/(2*n+2) for n in range(1, 41)] # G. C. Greubel, Apr 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 26 2012
STATUS
approved