login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305653
Expansion of Product_{k>=1} 1/(1 - x^k)^((k+1)*binomial(k+2,3)/2).
6
1, 1, 7, 27, 98, 323, 1085, 3471, 10998, 33874, 102737, 305849, 897899, 2597822, 7423408, 20957775, 58524868, 161741013, 442705279, 1200718351, 3228796864, 8611973548, 22793714865, 59887897679, 156252738062, 404964879419, 1042884107691, 2669317020743, 6792321636929
OFFSET
0,3
COMMENTS
Euler transform of A002415, shifted left one place.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A002415(k+1).
G.f.: exp(Sum_{k>=1} x^k*(1 + x^k)/(k*(1 - x^k)^5)).
a(n) ~ exp(Zeta'(-1)/6 - Zeta(3) / (4*Pi^2) + 149*Zeta(5) / (32*Pi^4) + 15876 * Zeta(3) * Zeta(5)^2 / Pi^12 - 666792 * Zeta(5)^3 / Pi^14 + 108884466432 * Zeta(5)^5 / (5*Pi^24) + Zeta'(-3)/3 + (-7*(7/2)^(1/6) * Pi / (384*sqrt(3)) - 21 * 2^(5/6) * sqrt(3) * 7^(1/6) * Zeta(3) * Zeta(5) / Pi^7 + 3087 * sqrt(3) * (7/2)^(1/6) * Zeta(5)^2 / (2*Pi^9) - 30339036 * 2^(5/6) * sqrt(3) * 7^(1/6) * Zeta(5)^4 / Pi^19) * n^(1/6) + ((7/2)^(1/3) * Zeta(3) / (2*Pi^2) - 21 * (7/2)^(1/3) * Zeta(5) / (2*Pi^4) + 254016 * 2^(2/3) * 7^(1/3) * Zeta(5)^3 / Pi^14) * n^(1/3) + (sqrt(7/6) * Pi / 12 - 756 * sqrt(42) * Zeta(5)^2 / Pi^9) * sqrt(n) + (9 * 2^(1/3) * 7^(2/3) * Zeta(5) / Pi^4) * n^(2/3) + (2 * (2/7)^(1/6) * sqrt(3) * Pi) / 5 * n^(5/6)) * Pi^(1/90) / (2^(247/270) * 3^(34/45) * 7^(23/270) * n^(79/135)). - Vaclav Kotesovec, Jun 08 2018
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d^2*
(d+2)*(d+1)^2/12, d=numtheory[divisors](j)), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 07 2018
MATHEMATICA
nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^((k + 1) Binomial[k + 2, 3]/2), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 28; CoefficientList[Series[Exp[Sum[x^k (1 + x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1)^2 (d + 2)/12, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jun 07 2018
STATUS
approved