The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305651 Expansion of Product_{k>=1} (1 + x^k)^(q(k)-1), where q(k) = number of partitions of k into distinct parts (A000009). 2
 1, 0, 0, 1, 1, 2, 3, 5, 7, 12, 17, 26, 39, 59, 87, 132, 192, 284, 419, 612, 892, 1303, 1887, 2730, 3945, 5677, 8154, 11689, 16711, 23839, 33960, 48244, 68432, 96888, 136922, 193148, 272058, 382508, 537007, 752735, 1053550, 1472406, 2054988, 2863993, 3986245, 5541008 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Weigh transform of A111133. Convolution of the sequences A050342 and A081362. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 N. J. A. Sloane, Transforms FORMULA G.f.: Product_{k>=1} (1 + x^k)^A111133(k). G.f.: Product_{k>=1} (1 + x^k)^(A000009(k)-1). MAPLE g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(       `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)     end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,       add(binomial(g(i)-1, j)*b(n-i*j, i-1), j=0..n/i)))     end: a:= n-> b(n\$2): seq(a(n), n=0..60);  # Alois P. Heinz, Jun 07 2018 MATHEMATICA nmax = 45; CoefficientList[Series[Product[(1 + x^k)^(PartitionsQ[k] - 1), {k, 1, nmax}], {x, 0, nmax}], x] nmax = 45; CoefficientList[Series[Exp[Sum[(-1)^(k + 1)/k (1/ QPochhammer[x^k, x^(2 k)] - 1/(1 - x^k)), {k, 1, nmax}]], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d (PartitionsQ[d] - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 45}] CROSSREFS Cf. A000009, A050342, A081362, A089259, A111133, A304966, A304969. Sequence in context: A326468 A326593 A123569 * A318185 A048816 A080528 Adjacent sequences:  A305648 A305649 A305650 * A305652 A305653 A305654 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jun 07 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 15 04:04 EDT 2021. Contains 342974 sequences. (Running on oeis4.)