login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080528
Sum of multinomials of (-1 + number of runs) in the partitions of n.
1
1, 1, 2, 3, 5, 7, 12, 17, 28, 42, 68, 104, 171, 268, 442, 715, 1192, 1970, 3332, 5611, 9614, 16472, 28546, 49583, 86876, 152656, 269983, 479077, 854309, 1528314, 2745113, 4945015, 8937266, 16194872, 29426358, 53592060, 97828713, 178942169, 327956023, 602130762
OFFSET
0,3
COMMENTS
Sum of multinomials of number of runs in the partitions of n equals 2^(n-1), so a(n) is less than 2^(n-1).
LINKS
EXAMPLE
The partitions of 4: {4},{3,1},{2,2},{2,1,1},{1,1,1,1} have {1},{1,1},{2},{2,1},{4} runs of equal integers. The sum of the Multinomials of {0},{0,0},{1},{1,0},{3} equals 5.
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
b(n, i-1, p)+add(b(n-i*j, i-1, p+j-1)/(j-1)!, j=1..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..45); # Alois P. Heinz, Jul 07 2014
MATHEMATICA
multiplicity2[li:{__Integer}] := (Multinomial@@(-1+Length/@Split[ # ]))&[Sort@li]; Table[Plus@@multiplicity2/@IntegerPartitions[n], {n, 32}]
(* Second program: *)
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p!, If[i < 1, 0, b[n, i - 1, p] + Sum[b[n - i*j, i - 1, p + j - 1]/(j - 1)!, {j, 1, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 45}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A305651 A318185 A048816 * A245152 A374634 A334271
KEYWORD
easy,nonn
AUTHOR
Wouter Meeussen, Mar 22 2003
EXTENSIONS
More terms from Alois P. Heinz, Jul 07 2014
STATUS
approved