login
A326468
Sum of the sixth largest parts of the partitions of n into 9 parts.
9
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 12, 17, 26, 37, 52, 71, 100, 133, 181, 239, 317, 410, 536, 682, 874, 1104, 1392, 1735, 2167, 2670, 3292, 4025, 4911, 5947, 7199, 8645, 10375, 12377, 14736, 17456, 20654, 24307, 28569, 33441, 39071, 45478, 52862
OFFSET
0,12
FORMULA
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} m.
a(n) = A326464(n) - A326465(n) - A326466(n) - A326467(n) - A326469(n) - A326470(n) - A326471(n) - A326472(n) - A326473(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[m, {i, j, Floor[(n - j - k - l - m - o - p - q)/2]}], {j, k, Floor[(n - k - l - m - o - p - q)/3]}], {k, l, Floor[(n - l - m - o - p - q)/4]}], {l, m, Floor[(n - m - o - p - q)/5]}], {m, o, Floor[(n - o - p - q)/6]}], {o, p, Floor[(n - p - q)/7]}], {p, q, Floor[(n - q)/8]}], {q, Floor[n/9]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 10 2019
STATUS
approved