login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A326466 Sum of the eighth largest parts in the partitions of n into 9 parts. 9
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11, 15, 23, 32, 44, 59, 81, 106, 141, 183, 239, 305, 392, 492, 622, 775, 965, 1189, 1468, 1790, 2184, 2644, 3195, 3835, 4600, 5479, 6523, 7722, 9125, 10733, 12611, 14744, 17218, 20030, 23264, 26925, 31120, 35845 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,12

LINKS

Table of n, a(n) for n=0..52.

Index entries for sequences related to partitions

FORMULA

a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} p.

a(n) = A326464(n) - A326465(n) - A326467(n) - A326468(n) - A326469(n) - A326470(n) - A326471(n) - A326472(n) - A326473(n).

MATHEMATICA

Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[p, {i, j, Floor[(n - j - k - l - m - o - p - q)/2]}], {j, k, Floor[(n - k - l - m - o - p - q)/3]}], {k, l, Floor[(n - l - m - o - p - q)/4]}], {l, m, Floor[(n - m - o - p - q)/5]}], {m, o, Floor[(n - o - p - q)/6]}], {o, p, Floor[(n - p - q)/7]}], {p, q, Floor[(n - q)/8]}], {q, Floor[n/9]}], {n, 0, 50}]

CROSSREFS

Cf. A026815, A326464, A326465, A326467, A326468, A326469, A326470, A326471, A326472, A326473.

Sequence in context: A280661 A055771 A052955 * A326591 A177485 A218023

Adjacent sequences:  A326463 A326464 A326465 * A326467 A326468 A326469

KEYWORD

nonn

AUTHOR

Wesley Ivan Hurt, Jul 10 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 4 08:58 EDT 2020. Contains 333213 sequences. (Running on oeis4.)