login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326473
Sum of the largest parts of the partitions of n into 9 parts.
9
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 9, 17, 27, 46, 69, 108, 158, 232, 326, 464, 633, 869, 1164, 1557, 2041, 2678, 3449, 4442, 5645, 7153, 8967, 11224, 13903, 17187, 21081, 25785, 31321, 37963, 45714, 54930, 65650, 78263, 92860, 109946, 129586, 152417, 178584
OFFSET
0,11
FORMULA
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} (n-i-j-k-l-m-o-p-q).
a(n) = A326464(n) - A326465(n) - A326466(n) - A326467(n) - A326468(n) - A326469(n) - A326470(n) - A326471(n) - A326472(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[(n-i-j-k-l-m-o-p-q), {i, j, Floor[(n - j - k - l - m - o - p - q)/2]}], {j, k, Floor[(n - k - l - m - o - p - q)/3]}], {k, l, Floor[(n - l - m - o - p - q)/4]}], {l, m, Floor[(n - m - o - p - q)/5]}], {m, o, Floor[(n - o - p - q)/6]}], {o, p, Floor[(n - p - q)/7]}], {p, q, Floor[(n - q)/8]}], {q, Floor[n/9]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 10 2019
STATUS
approved