login
A326476
A(n, k) = (m*k)! [x^k] MittagLefflerE(m, x)^n, for m = 2, n >= 0, k >= 0; square array read by descending antidiagonals.
3
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 8, 3, 1, 0, 1, 32, 21, 4, 1, 0, 1, 128, 183, 40, 5, 1, 0, 1, 512, 1641, 544, 65, 6, 1, 0, 1, 2048, 14763, 8320, 1205, 96, 7, 1, 0, 1, 8192, 132861, 131584, 26465, 2256, 133, 8, 1, 0, 1, 32768, 1195743, 2099200, 628805, 64896, 3787, 176, 9, 1
OFFSET
0,9
EXAMPLE
Array starts:
[0] 1, 0, 0, 0, 0, 0, 0, 0, ... A000007
[1] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012
[2] 1, 2, 8, 32, 128, 512, 2048, 8192, ... A081294
[3] 1, 3, 21, 183, 1641, 14763, 132861, 1195743, ... A054879
[4] 1, 4, 40, 544, 8320, 131584, 2099200, 33562624, ... A092812
[5] 1, 5, 65, 1205, 26465, 628805, 15424865, 382964405, ... A121822
[6] 1, 6, 96, 2256, 64896, 2086656, 71172096, 2499219456, ...
[7] 1, 7, 133, 3787, 134953, 5501167, 243147373, 11266376947, ...
[8] 1, 8, 176, 5888, 250496, 12397568, 676591616, 39316226048, ...
[9] 1, 9, 225, 8649, 427905, 24943689, 1624354785, 114066126729, ...
Seen as a triangle:
[1]
[0, 1]
[0, 1, 1]
[0, 1, 2, 1]
[0, 1, 8, 3, 1]
[0, 1, 32, 21, 4, 1]
[0, 1, 128, 183, 40, 5, 1]
[0, 1, 512, 1641, 544, 65, 6, 1]
[0, 1, 2048, 14763, 8320, 1205, 96, 7, 1]
[0, 1, 8192, 132861, 131584, 26465, 2256, 133, 8, 1]
MATHEMATICA
(* The function MLPower is defined in A326327. *)
For[n = 0, n < 8, n++, Print[MLPower[2, n, 8]]]
PROG
(Sage) # uses[MLPower from A326327]
for n in (0..6): print(MLPower(2, n, 9))
CROSSREFS
Columns include: A000567. Variant: A286899.
Cf. A326474 (m=3, p>=0), A326475 (m=3, p<=0), A326327 (m=2, p<=0), this sequence (m=2, p>=0).
Sequence in context: A058998 A085324 A264945 * A247864 A370398 A331278
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 08 2019
STATUS
approved