login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326477
Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 2 and 0 <= k <= n.
3
1, 0, 1, 0, 4, 3, 0, 46, 60, 15, 0, 1114, 1848, 840, 105, 0, 46246, 88770, 54180, 12600, 945, 0, 2933074, 6235548, 4574130, 1469160, 207900, 10395, 0, 263817646, 605964450, 505915410, 199849650, 39729690, 3783780, 135135
OFFSET
0,5
FORMULA
For m >= 1 let P(m,0) = 1 and P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)*P(m, n-k)*x for n > 0. Then T_{m}(n, k) = Sum_{k=0..n} ([x^k]P(m, n))*rf(x,k)/k! where rf(x,k) are the rising factorial powers. T(n, k) = T_{2}(n, k).
EXAMPLE
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 4, 3]
[3] [0, 46, 60, 15]
[4] [0, 1114, 1848, 840, 105]
[5] [0, 46246, 88770, 54180, 12600, 945]
[6] [0, 2933074, 6235548, 4574130, 1469160, 207900, 10395]
MAPLE
CL := f -> PolynomialTools:-CoefficientList(f, x):
FL := s -> ListTools:-Flatten(s, 1):
StirPochConv := proc(m, n) local P, L; P := proc(m, n) option remember;
`if`(n = 0, 1, add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n)) end:
L := CL(P(m, n)); CL(expand(add(L[k+1]*pochhammer(x, k)/k!, k=0..n))) end:
FL([seq(StirPochConv(2, n), n = 0..7)]);
MATHEMATICA
P[_, 0] = 1; P[m_, n_] := P[m, n] = Sum[Binomial[m*n, m*k]*P[m, n-k]*x, {k, 1, n}] // Expand;
T[m_][n_] := CoefficientList[P[m, n], x].Table[Pochhammer[x, k]/k!, {k, 0, n}] // CoefficientList[#, x]&;
Table[T[2][n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
PROG
(Sage)
def StirPochConv(m, n):
z = var('z'); R = ZZ[x]
F = [i/m for i in (1..m-1)]
H = hypergeometric([], F, (z/m)^m)
P = R(factorial(m*n)*taylor(exp(x*(H-1)), z, 0, m*n + 1).coefficient(z, m*n))
L = P.list()
S = sum(L[k]*rising_factorial(x, k) for k in (0..n))
return expand(S).list()
for n in (0..6): print(StirPochConv(2, n))
CROSSREFS
Row sums A094088. Alternating row sums A153881 starting at 0.
Main diagonal A001147. Associated set partitions A241171.
A129062 (m=1, associated with A131689), this sequence (m=2), A326587 (m=3, associated with A278073), A326585 (m=4, associated with A278074).
Sequence in context: A120362 A201636 A010102 * A285650 A144161 A054669
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 08 2019
STATUS
approved