login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278074
Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 4.
12
1, 0, 1, 0, 1, 70, 0, 1, 990, 34650, 0, 1, 16510, 2702700, 63063000, 0, 1, 261630, 213519150, 17459442000, 305540235000, 0, 1, 4196350, 17651304000, 4350310965000, 231905038365000, 3246670537110000
OFFSET
0,6
LINKS
FORMULA
E.g.f.: 1/(1-t*((cosh(x)+cos(x))/2-1)), nonzero terms.
EXAMPLE
Triangle starts:
[1]
[0, 1]
[0, 1, 70]
[0, 1, 990, 34650]
[0, 1, 16510, 2702700, 63063000]
[0, 1, 261630, 213519150, 17459442000, 305540235000]
MAPLE
P := proc(m, n) option remember; if n = 0 then 1 else
add(binomial(m*n, m*k)* P(m, n-k)*x, k=1..n) fi end:
for n from 0 to 6 do PolynomialTools:-CoefficientList(P(4, n), x) od;
# Alternatively:
A278074_row := proc(n) 1/(1-t*((cosh(x)+cos(x))/2-1)); expand(series(%, x, 4*n+1));
(4*n)!*coeff(%, x, 4*n); PolynomialTools:-CoefficientList(%, t) end:
for n from 0 to 5 do A278074_row(n) od;
MATHEMATICA
With[{m = 4}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 24, m}]];
Function[arg, CoefficientList[arg, t]] /@ % // Flatten
PROG
(Sage) # uses [P from A278073]
def A278074_row(n): return list(P(4, n))
for n in (0..6): print(A278074_row(n)) # Peter Luschny, Mar 24 2020
CROSSREFS
Cf. A014608 (diagonal), A243665 (row sums), A211212 (alternating row sums), A281480 (central coefficients).
Cf. A097805 (m=0), A131689 (m=1), A241171 (m=2), A278073 (m=3).
Cf. A327024 (refinement).
Sequence in context: A116238 A136114 A365913 * A075405 A365914 A177808
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 22 2017
STATUS
approved