OFFSET
0,6
COMMENTS
Signed version of A131689.
Integral_{x=0..1} F_n(x) = B_n(1) where B_n(x) are the Bernoulli polynomials.
LINKS
Peter Luschny, Illustration of the polynomials.
Peter Luschny, The Bernoulli Manifesto.
Grzegorz Rządkowski, Bernoulli numbers and solitons - revisited, Journal of Nonlinear Mathematical Physics, (2010) 17:1, 121-126.
J. Worpitzky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik, 94 (1883), 203-232.
FORMULA
T(n, k) = (-1)^(n-k) * Stirling2(n, k) * k!.
E.g.f.: 1/(1-x*(1-exp(-t))) = Sum_{n>=0} F_n(x) t^n/n!.
T(n, k) = k*(T(n-1, k-1) - T(n-1, k)) for 0 <= k <= n, T(0, 0) = 1, otherwise 0.
Bernoulli numbers are given by B(n) = Sum_{k = 0..n} T(n, k) / (k+1) with B(1) = 1/2. - Michael Somos, Jul 08 2018
Let F_n(x) be the row polynomials of this sequence and W_n(x) the row polynomials of A163626. Then F_n(1 - x) = W_n(x) and Integral_{x=0..1} U(n, x) = Bernoulli(n, 1) for U in {W, F}. - Peter Luschny, Aug 10 2021
T(n, k) = [z^k] Sum_{k=0..n} Eulerian(n, k)*z^(k+1)*(z-1)^(n-k-1) for n >= 1, where Eulerian(n, k) = A173018(n, k). - Peter Luschny, Aug 15 2022
EXAMPLE
Triangle of coefficients starts:
[1]
[0, 1]
[0, -1, 2]
[0, 1, -6, 6]
[0, -1, 14, -36, 24]
[0, 1, -30, 150, -240, 120]
[0, -1, 62, -540, 1560, -1800, 720]
[0, 1, -126, 1806, -8400, 16800, -15120, 5040]
MAPLE
F := (n, x) -> add((-1)^n*Stirling2(n, k)*k!*(-x)^k, k=0..n):
for n from 0 to 10 do PolynomialTools:-CoefficientList(F(n, x), x) od;
MATHEMATICA
T[ n_, k_] := If[ n < 0 || k < 0, 0, (-1)^(n - k) k! StirlingS2[n, k]]; (* Michael Somos, Jul 08 2018 *)
PROG
(PARI)
{T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(n + i) * binomial(k, i) * i^n))};
/* Michael Somos, Jul 08 2018 */
(Julia)
function T(n, k)
if k < 0 || k > n return 0 end
if n == 0 && k == 0 return 1 end
k*(T(n-1, k-1) - T(n-1, k))
end
for n in 0:7
println([T(n, k) for k in 0:n])
end
# Peter Luschny, Mar 26 2020
CROSSREFS
Let F(n, x) = Sum_{k=0..n} T(n,k)*x^k then, apart from possible differences in the sign or the offset, we have: F(n, -5) = A094418(n), F(n, -4) = A094417(n), F(n, -3) = A032033(n), F(n, -2) = A004123(n), F(n, -1) = A000670(n), F(n, 0) = A000007(n), F(n, 1) = A000012(n), F(n, 2) = A000629(n), F(n, 3) = A201339(n), F(n, 4) = A201354(n), F(n, 5) = A201365(n).
KEYWORD
sign
AUTHOR
Peter Luschny, Jan 09 2017
STATUS
approved