login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094418
Generalized ordered Bell numbers Bo(5,n).
23
1, 5, 55, 905, 19855, 544505, 17919055, 687978905, 30187495855, 1490155456505, 81732269223055, 4931150091426905, 324557348772511855, 23141780973332248505, 1776997406800302687055, 146197529083891406394905
OFFSET
0,2
COMMENTS
Fifth row of array A094416, which has more information.
LINKS
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
FORMULA
E.g.f.: 1/(6 - 5*exp(x)).
a(n) = Sum_{k=0..n} A131689(n,k)*5^k. - Philippe Deléham, Nov 03 2008
a(n) ~ n! / (6*(log(6/5))^(n+1)). - Vaclav Kotesovec, Mar 14 2014
a(0) = 1; a(n) = 5 * Sum_{k=1..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Jan 17 2020
a(0) = 1; a(n) = 5*a(n-1) - 6*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
MATHEMATICA
t = 30; Range[0, t]! CoefficientList[Series[1/(6 - 5 Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *)
PROG
(Magma)
A094416:= func< n, k | (&+[Factorial(j)*n^j*StirlingSecond(k, j): j in [0..k]]) >;
A094418:= func< k | A094416(5, k) >;
[A094418(n): n in [0..30]]; // G. C. Greubel, Jan 12 2024
(SageMath)
def A094416(n, k): return sum(factorial(j)*n^j*stirling_number2(k, j) for j in range(k+1)) # array
def A094418(k): return A094416(5, k)
[A094418(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
(PARI) my(N=25, x='x+O('x^N)); Vec(serlaplace(1/(6 - 5*exp(x)))) \\ Joerg Arndt, Jan 15 2024
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 02 2004
STATUS
approved