The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A094418 Generalized ordered Bell numbers Bo(5,n). 23
 1, 5, 55, 905, 19855, 544505, 17919055, 687978905, 30187495855, 1490155456505, 81732269223055, 4931150091426905, 324557348772511855, 23141780973332248505, 1776997406800302687055, 146197529083891406394905 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Fifth row of array A094416, which has more information. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018. FORMULA E.g.f.: 1/(6 - 5*exp(x)). a(n) = Sum_{k=0..n} A131689(n,k)*5^k. - Philippe Deléham, Nov 03 2008 a(n) ~ n! / (6*(log(6/5))^(n+1)). - Vaclav Kotesovec, Mar 14 2014 a(0) = 1; a(n) = 5 * Sum_{k=1..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Jan 17 2020 a(0) = 1; a(n) = 5*a(n-1) - 6*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023 MATHEMATICA t = 30; Range[0, t]! CoefficientList[Series[1/(6 - 5 Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *) PROG (Magma) A094416:= func< n, k | (&+[Factorial(j)*n^j*StirlingSecond(k, j): j in [0..k]]) >; A094418:= func< k | A094416(5, k) >; [A094418(n): n in [0..30]]; // G. C. Greubel, Jan 12 2024 (SageMath) def A094416(n, k): return sum(factorial(j)*n^j*stirling_number2(k, j) for j in range(k+1)) # array def A094418(k): return A094416(5, k) [A094418(n) for n in range(31)] # G. C. Greubel, Jan 12 2024 (PARI) my(N=25, x='x+O('x^N)); Vec(serlaplace(1/(6 - 5*exp(x)))) \\ Joerg Arndt, Jan 15 2024 CROSSREFS Cf. A094416, A094417, A094419, A094422, A131689. Cf. A346984, A365568, A365569, A365570. Sequence in context: A294051 A145662 A362653 * A365588 A367164 A008543 Adjacent sequences: A094415 A094416 A094417 * A094419 A094420 A094421 KEYWORD nonn AUTHOR Ralf Stephan, May 02 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 08:58 EDT 2024. Contains 373402 sequences. (Running on oeis4.)