The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A365569 Expansion of e.g.f. 1 / (6 - 5 * exp(x))^(3/5). 5
 1, 3, 27, 387, 7659, 193491, 5948091, 215446563, 8984708235, 423944899443, 22328393101659, 1298429924941251, 82625791930962219, 5711012035686681363, 426058604580805219323, 34121803137713388036963, 2919847869159667841599947, 265868538017899566748612275 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..17. FORMULA a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (5*j+3)) * Stirling2(n,k). a(0) = 1; a(n) = Sum_{k=1..n} (5 - 2*k/n) * binomial(n,k) * a(n-k). a(n) ~ sqrt(2*Pi) * n^(n + 1/10) / (6^(3/5) * Gamma(3/5) * exp(n) * log(6/5)^(n + 3/5)). - Vaclav Kotesovec, Nov 11 2023 a(0) = 1; a(n) = 3*a(n-1) - 6*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023 MATHEMATICA a[n_] := Sum[Product[5*j + 3, {j, 0, k - 1}] * StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 11 2023 *) PROG (PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 5*j+3)*stirling(n, k, 2)); CROSSREFS Cf. A094418, A346984, A365568, A365570. Sequence in context: A365794 A138436 A141057 * A365586 A201696 A011781 Adjacent sequences: A365566 A365567 A365568 * A365570 A365571 A365572 KEYWORD nonn AUTHOR Seiichi Manyama, Sep 09 2023 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 13:19 EDT 2024. Contains 372736 sequences. (Running on oeis4.)