login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A365567 Expansion of e.g.f. 1 / (5 - 4 * exp(x))^(3/4). 3
1, 3, 24, 297, 5001, 106578, 2748399, 83182347, 2890153626, 113364686403, 4954547485149, 238734066994272, 12573018414279501, 718498413957515103, 44278797576715884024, 2927171415480872824197, 206625238881832412874501, 15511299587628626891270178 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (Product_{j=0..k-1} (4*j+3)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (4 - k/n) * binomial(n,k) * a(n-k).
a(n) ~ Gamma(1/4) * n^(n + 1/4) / (5^(3/4) * sqrt(Pi) * exp(n) * log(5/4)^(n + 3/4)). - Vaclav Kotesovec, Nov 11 2023
a(0) = 1; a(n) = 3*a(n-1) - 5*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
MATHEMATICA
a[n_] := Sum[Product[4*j + 3, {j, 0, k - 1}] * StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Sep 11 2023 *)
PROG
(PARI) a(n) = sum(k=0, n, prod(j=0, k-1, 4*j+3)*stirling(n, k, 2));
CROSSREFS
Sequence in context: A326001 A365998 A292186 * A258301 A365584 A138209
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 09 2023
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 22:14 EDT 2024. Contains 371848 sequences. (Running on oeis4.)