login
A094417
Generalized ordered Bell numbers Bo(4,n).
24
1, 4, 36, 484, 8676, 194404, 5227236, 163978084, 5878837476, 237109864804, 10625889182436, 523809809059684, 28168941794178276, 1641079211868751204, 102961115527874385636, 6921180217049667005284, 496267460209336700111076
OFFSET
0,2
COMMENTS
Fourth row of array A094416, which has more information.
LINKS
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
FORMULA
E.g.f.: 1/(5 - 4*exp(x)).
a(n) = 4 * A050353(n) for n>0.
a(n) = Sum_{k=0..n} A131689(n,k)*4^k. - Philippe Deléham, Nov 03 2008
E.g.f.: A(x) with A_n = 4 * Sum_{k=0..n-1} C(n,k) * A_k; A_0 = 1. - Vladimir Kruchinin, Jan 27 2011
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 8*x*(k+1)/(8*x*(k+1) - 1 + 10*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) = log(5/4)*int {x = 0..inf} (floor(x))^n * (5/4)^(-x) dx. - Peter Bala, Feb 14 2015
a(0) = 1; a(n) = 4*a(n-1) - 5*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, 4* add(binomial(n, k) *a(k), k=0..n-1))
end:
seq(a(n), n=0..20);
MATHEMATICA
max = 16; f[x_] := 1/(5-4*E^x); CoefficientList[Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Nov 14 2011, after g.f. *)
PROG
(Magma) m:=20; R<x>:=LaurentSeriesRing(RationalField(), m); b:=Coefficients(R!(1/(5 - 4*Exp(x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // Bruno Berselli, Mar 17 2014
(SageMath)
def A094416(n, k): return sum(factorial(j)*n^j*stirling_number2(k, j) for j in range(k+1)) # array
def A094417(k): return A094416(4, k)
[A094417(n) for n in range(31)] # G. C. Greubel, Jan 12 2024
(PARI) my(N=25, x='x+O('x^N)); Vec(serlaplace(1/(5 - 4*exp(x)))) \\ Joerg Arndt, Jan 15 2024
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 02 2004
STATUS
approved