login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094420
Generalized ordered Bell numbers Bo(n,n).
11
1, 1, 10, 219, 8676, 544505, 49729758, 6232661239, 1026912225160, 215270320769109, 55954905981282210, 17662898483917308083, 6655958151527584785900, 2951503248457748982755953, 1521436331153097968932487206, 902143190212525713006814917615, 609729139653483641913607434550800
OFFSET
0,3
COMMENTS
Main diagonal of array A094416.
LINKS
FORMULA
a(n) ~ sqrt(2*Pi) * n^(2*n + 5/2) / exp(n - 3/2). - Vaclav Kotesovec, Jul 23 2018
a(n) = Sum_{k=0..n} k!*n^k*Stirling2(n, k). - Seiichi Manyama, Jun 12 2020
From Peter Luschny, May 21 2021: (Start)
a(n) = F_{n}(n), the Fubini polynomial F_{n}(x) evaluated at x = n.
a(n) = n! * [x^n] (1 / (1 + n * (1 - exp(x)))). (End)
MAPLE
F := proc(n) option remember; if n = 0 then return 1 fi;
expand(add(binomial(n, k)*F(n-k)*x, k=1..n)) end:
a := n -> subs(x = n, F(n)):
seq(a(n), n = 0..16); # Peter Luschny, May 21 2021
MATHEMATICA
Table[Sum[k!*n^k*StirlingS2[n, k], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jul 23 2018 *)
PROG
(PARI) {a(n) = sum(k=0, n, k!*n^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jun 12 2020
(SageMath)
def aList(len):
R.<x> = PowerSeriesRing(QQ)
f = lambda n: R(1/(1 + n * (1 - exp(x))))
return [factorial(n)*f(n).list()[n] for n in (0..len-1)]
print(aList(17)) # Peter Luschny, May 21 2021
(Magma)
A094420:= func< n | (&+[Factorial(k)*n^k*StirlingSecond(n, k): k in [0..n]]) >;
[A094420(n): n in [0..25]]; // G. C. Greubel, Jan 12 2024
CROSSREFS
The coefficients of the Fubini polynomials are A131689.
Central column of A344499.
Sequence in context: A007699 A024291 A024292 * A053131 A334908 A166181
KEYWORD
nonn
AUTHOR
Ralf Stephan, May 02 2004
EXTENSIONS
More terms from Seiichi Manyama, Jun 12 2020
STATUS
approved