login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized ordered Bell numbers Bo(n,n).
11

%I #31 Jan 12 2024 01:15:58

%S 1,1,10,219,8676,544505,49729758,6232661239,1026912225160,

%T 215270320769109,55954905981282210,17662898483917308083,

%U 6655958151527584785900,2951503248457748982755953,1521436331153097968932487206,902143190212525713006814917615,609729139653483641913607434550800

%N Generalized ordered Bell numbers Bo(n,n).

%C Main diagonal of array A094416.

%H Seiichi Manyama, <a href="/A094420/b094420.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) ~ sqrt(2*Pi) * n^(2*n + 5/2) / exp(n - 3/2). - _Vaclav Kotesovec_, Jul 23 2018

%F a(n) = Sum_{k=0..n} k!*n^k*Stirling2(n, k). - _Seiichi Manyama_, Jun 12 2020

%F From _Peter Luschny_, May 21 2021: (Start)

%F a(n) = F_{n}(n), the Fubini polynomial F_{n}(x) evaluated at x = n.

%F a(n) = n! * [x^n] (1 / (1 + n * (1 - exp(x)))). (End)

%p F := proc(n) option remember; if n = 0 then return 1 fi;

%p expand(add(binomial(n, k)*F(n-k)*x, k=1..n)) end:

%p a := n -> subs(x = n, F(n)):

%p seq(a(n), n = 0..16); # _Peter Luschny_, May 21 2021

%t Table[Sum[k!*n^k*StirlingS2[n, k], {k, 0, n}], {n, 1, 20}] (* _Vaclav Kotesovec_, Jul 23 2018 *)

%o (PARI) {a(n) = sum(k=0, n, k!*n^k*stirling(n, k, 2))} \\ _Seiichi Manyama_, Jun 12 2020

%o (SageMath)

%o def aList(len):

%o R.<x> = PowerSeriesRing(QQ)

%o f = lambda n: R(1/(1 + n * (1 - exp(x))))

%o return [factorial(n)*f(n).list()[n] for n in (0..len-1)]

%o print(aList(17)) # _Peter Luschny_, May 21 2021

%o (Magma)

%o A094420:= func< n | (&+[Factorial(k)*n^k*StirlingSecond(n,k): k in [0..n]]) >;

%o [A094420(n): n in [0..25]]; // _G. C. Greubel_, Jan 12 2024

%Y Cf. A094416, A321189.

%Y The coefficients of the Fubini polynomials are A131689.

%Y Central column of A344499.

%K nonn

%O 0,3

%A _Ralf Stephan_, May 02 2004

%E More terms from _Seiichi Manyama_, Jun 12 2020