|
|
A094422
|
|
Antidiagonal sums of array A094416.
|
|
4
|
|
|
1, 5, 26, 174, 1531, 17275, 243092, 4165260, 85133685, 2039546785, 56447550542, 1783865468186, 63766726231791, 2558290237404919, 114418196763735112, 5670168958036693976, 309630356618418661737, 18536683645526372648445
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=1..n} Bo(n-k+1, k), where Bo(r, n) = A094416(r, n).
|
|
MATHEMATICA
|
Table[Sum[Sum[j!*(n - k + 1)^j*StirlingS2[k, j], {j, 0, n}], {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jul 23 2018 *)
|
|
PROG
|
(Magma)
A094422:= func< n | (&+[(&+[Factorial(j)*(n-k+1)^j*StirlingSecond(k, j): j in [0..n]]): k in [1..n]]) >;
(SageMath)
def f(n, k, j): return factorial(j)*(n-k+1)^j*stirling_number2(k, j)
def A094422(n): return sum(sum(f(n, k, j) for j in range(n+1)) for k in range(1, n+1))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|