login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356597
Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k) )^exp(x).
0
1, 1, 5, 26, 172, 1354, 12403, 127945, 1471006, 18589503, 255951308, 3808299648, 60871219649, 1039240205691, 18868377309780, 362838034712928, 7364831540699076, 157305165900364641, 3526069495916583260, 82744901973286823822, 2028396974232995349291
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A354339(k) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, 1-x^k/k)^exp(x)))
(PARI) a354339(n) = n!*sum(k=1, n, sumdiv(k, d, 1/(d*(k/d)^d))/(n-k)!);
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354339(j)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
Sequence in context: A057793 A090226 A355672 * A094422 A346545 A179513
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 15 2022
STATUS
approved