login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356599
Expansion of e.g.f. ( Product_{k>0} 1/(1 - x^k/k!) )^exp(x).
0
1, 1, 5, 25, 159, 1201, 10488, 102901, 1121375, 13406353, 174284898, 2445111373, 36799134584, 591042564425, 10086822013726, 182218681622851, 3472980343846199, 69632877583186121, 1464890891351327598, 32260213678562913097, 742152913359395190170
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A354341(k) * binomial(n-1,k-1) * a(n-k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, 1-x^k/k!)^exp(x)))
(PARI) a354341(n) = n!*sum(k=1, n, sumdiv(k, d, 1/(d*(k/d)!^d))/(n-k)!);
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a354341(j)*binomial(i-1, j-1)*v[i-j+1])); v;
CROSSREFS
Sequence in context: A179324 A097145 A085644 * A137963 A366435 A144887
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 15 2022
STATUS
approved