login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366435
G.f. A(x) satisfies A(x) = 1 + x * ((1 - x) / A(x))^(5/2).
7
1, 1, -5, 25, -160, 1150, -8851, 71345, -594530, 5080300, -44272760, 391961328, -3515490820, 31874449160, -291676084205, 2690284784605, -24985250240043, 233447554879855, -2192862233710505, 20696454624488125, -196168344717398010, 1866499116495323946
OFFSET
0,3
FORMULA
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(7*k/2-1,k) * binomial(5*k/2,n-k) / (7*k/2-1).
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(7*k/2-1, k)*binomial(5*k/2, n-k)/(7*k/2-1));
CROSSREFS
Partial sums give A366405.
Sequence in context: A085644 A356599 A137963 * A144887 A181344 A361916
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 09 2023
STATUS
approved