login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366434
G.f. A(x) satisfies A(x) = 1 + x * ((1 - x) / A(x))^2.
7
1, 1, -4, 16, -84, 496, -3140, 20832, -142932, 1005856, -7220100, 52657392, -389088084, 2906551440, -21914464708, 166548194240, -1274531623764, 9812792232768, -75955668337412, 590742300208848, -4614140648464980, 36178872976542768, -284664427193774916
OFFSET
0,3
FORMULA
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(3*k-1,k) * binomial(2*k,n-k) / (3*k-1).
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(3*k-1, k)*binomial(2*k, n-k)/(3*k-1));
CROSSREFS
Partial sums give A366364.
Sequence in context: A123010 A121146 A134006 * A090013 A333370 A125793
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 09 2023
STATUS
approved