login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123010
a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3), for n>4, with a(1)=1, a(2)=0, a(3)=4, a(4)=16.
1
1, 0, 4, 16, 84, 416, 2084, 10416, 52084, 260416, 1302084, 6510416, 32552084, 162760416, 813802084, 4069010416, 20345052084, 101725260416, 508626302084, 2543131510416, 12715657552084, 63578287760416, 317891438802084
OFFSET
1,3
FORMULA
O.g.f.: (1 -4*x -x^2)/((1+x)*(1-5*x)). - R. J. Mathar, Dec 05 2007
a(n) = (1/3)*(2*5^(n-2) - 2*(-1)^n) + (1/5)*0^(n-1). - Ridouane Oudra, Feb 22 2021
E.g.f.: (1/75)*(48 + 158x - 50*exp(-x) + 2*exp(5*x)). - G. C. Greubel, Jul 13 2021
MATHEMATICA
LinearRecurrence[{5, 1, -5}, {1, 0, 4, 16}, 40] (* G. C. Greubel, Jul 13 2021 *)
PROG
(PARI) my(x='x+O('x^33)); Vec((x^2+4*x-1)/((x+1)*(5*x-1))) \\ Joerg Arndt, Feb 22 2021
(Sage) [1]+[(2/3)*(5^(n-2) - (-1)^n) for n in (2..40)] # G. C. Greubel, Jul 13 2021
CROSSREFS
Sequence in context: A204066 A351816 A022564 * A121146 A134006 A366434
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Sep 23 2006
EXTENSIONS
Edited by N. J. A. Sloane, Oct 15 2006
Edited by Joerg Arndt, Feb 22 2021
STATUS
approved