login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A366433
G.f. A(x) satisfies A(x) = 1 + x * ((1 - x) / A(x))^(3/2).
7
1, 1, -3, 9, -37, 171, -849, 4421, -23820, 131676, -742616, 4255944, -24714276, 145103426, -859920585, 5137093695, -30902681230, 187034086170, -1138106903928, 6958662440416, -42729903714420, 263400623938140, -1629378251621535, 10111374706286895
OFFSET
0,3
FORMULA
a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(5*k/2-1,k) * binomial(3*k/2,n-k) / (5*k/2-1).
a(n) ~ -(-1)^n * sqrt(4*10^(1/3) + 10^(2/3) - 5) * 3^(n + 1/2) * 5^(n-1) / (sqrt(Pi) * (2 + 10^(1/3)) * n^(3/2) * (4*10^(1/3) + 10^(2/3) - 11)^n). - Vaclav Kotesovec, Oct 10 2023
MATHEMATICA
Table[(-1)^(n-1) * Sum[Binomial[5*k/2 - 1, k]*Binomial[3*k/2, n - k]/(5*k/2 - 1), {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Oct 10 2023 *)
PROG
(PARI) a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k/2-1, k)*binomial(3*k/2, n-k)/(5*k/2-1));
CROSSREFS
Partial sums give A366404.
Sequence in context: A245890 A119856 A077365 * A319119 A006229 A321734
KEYWORD
sign
AUTHOR
Seiichi Manyama, Oct 09 2023
STATUS
approved