login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006229
Expansion of exp( tan x ).
(Formerly M2822)
13
1, 1, 1, 3, 9, 37, 177, 959, 6097, 41641, 325249, 2693691, 24807321, 241586893, 2558036145, 28607094455, 342232522657, 4315903789009, 57569080467073, 807258131578995, 11879658510739497, 183184249105857781, 2948163649552594737, 49548882107764546223
OFFSET
0,4
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259, Sum_{k} T(n,k).
CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..480 (terms 0..100 from T. D. Noe)
Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
FORMULA
E.g.f.: exp(tan(x)).
a(n) = sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n),k,1,n), n>0. - Vladimir Kruchinin, Aug 05 2010
E.g.f.: 1 + tan(x)/T(0), where T(k) = 4*k+1 - tan(x)/(2 + tan(x)/(4*k+3 - tan(x)/(2 + tan(x)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
a(n) = sum(i=0..(n-1)/2, binomial(n-1,2*i)*z(i)*a(n-2*i-1)), a(0)=1, where z(n) is tangent (or "zag") numbers (A000182). - Vladimir Kruchinin, Mar 04 2015
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[Tan[x]], {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Oct 04 2011 *)
PROG
(Maxima)
a(n):=sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n, j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n), k, 1, n); /* Vladimir Kruchinin, Aug 05 2010 */
(Julia)
function A006229_list(len::Int)
len <= 0 && return BigInt[]
T = zeros(BigInt, len, len); T[1, 1] = 1
S = Array(BigInt, len); S[1] = 1
for n in 2:len
T[n, n] = 1
for k in 2:n-1 T[n, k] = T[n-1, k-1] + k*(k-1)*T[n-1, k+1] end
S[n] = sum(T[n, k] for k in 2:n)
end
S end
println(A006229_list(24)) # Peter Luschny, Apr 27 2017
CROSSREFS
Row sums of A059419 and unsigned A111593.
Sequence in context: A077365 A366433 A319119 * A321734 A008986 A105215
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001
STATUS
approved