OFFSET
1,4
COMMENTS
(tan(x))^k = sum{n>0, If n+k is odd, T(n,k) = 0 = n!/k!*(-1)^((n+k)/2)*sum{j=k..n} (j!/n!) * Stirling2(n,j) * 2^(n-j) * (-1)^(n+j-k) * binomial(j-1,k-1)*x^n}. - Vladimir Kruchinin, Aug 13 2012
Also the Bell transform of A009006(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.
LINKS
Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
Toufik Mansour, Mark Shattuck, Combinatorial parameters on bargraphs of permutations, Transactions on Combinatorics, Article 1, Vol. 7, Issue 2, June 2018, Page 1-16.
FORMULA
T(n+1, k) = T(n, k-1) + k*(k+1)*T(n, k+1), T(n, n) = 1.
If n+k is odd, T(n,k) = 0 = 1/k!*(-1)^((n+k)/2)*Sum_{j=k..n} j!* Stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1). - Vladimir Kruchinin, Feb 10 2011
E.g.f.: exp(t*tan(x))-1 = t*x + t^2*x^2/2! + (2*t + t^3)*x^3/3! + ....
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x^2)*d/dx. - Peter Bala, Nov 25 2011
The o.g.f.s of the diagonals of this triangle are rational functions obtained from the series reversion (x-t*tan(x))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3! + 8*t*(2+3*t)/(1-t)^7*x^5/5! + 16*t*(17+78*t+45*t^2)/(1-t)^10*x^7/7! + .... For example, the fourth subdiagonal has o.g.f. 8*t*(2+3*t)/(1-t)^7 = 16*t + 136*t^2 + 616*t^3 + .... - Peter Bala, Apr 23 2012
With offset 0 and initial column of zeros, except for T(0,0) = 1, e.g.f.(t,x) = e^(x*tan(t)) = e^(P(.,x)t) ; the lowering operator, L = atan(d/dx) ; and the raising operator, R = x [1 +(d/dx)^2], where L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x). The sequence is a binomial Sheffer sequence. - Tom Copeland, Oct 01 2015
EXAMPLE
1;
0, 1;
2, 0, 1;
0, 8, 0, 1;
16, 0, 20, 0, 1;
0, 136, 0, 40, 0, 1;
272, 0, 616, 0, 70, 0, 1;
0, 3968, 0, 2016, 0, 112, 0, 1;
7936, 0, 28160, 0, 5376, 0, 168, 0, 1;
MAPLE
A059419 := proc(n, k) option remember; if n = k then 1; elif k <0 or k > n then 0; else procname(n-1, k-1)+k*(k+1)*procname(n-1, k+1) ; end if; end proc: # R. J. Mathar, Feb 11 2011
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 2^(n+1)*abs(euler(n+1, 1)), 10); # Peter Luschny, Jan 26 2016
MATHEMATICA
d[f_ ] := (1+x^2)*D[f, x]; d[ f_, n_] := Nest[d, f, n]; row[n_] := Rest[ CoefficientList[ d[Exp[x*t], n] /. x -> 0, t]]; Flatten[ Table[ row[n], {n, 1, 12}]] (* Jean-François Alcover, Dec 21 2011, after Peter Bala *)
rows = 12;
t = Table[2^(n+1)*Abs[EulerE[n+1, 1]], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
PROG
(PARI) T(n, k)=if(k<1 || k>n, 0, n!*polcoeff(tan(x+x*O(x^n))^k/k!, n))
(Sage)
def A059419_triangle(dim):
M = matrix(ZZ, dim, dim)
for n in (0..dim-1): M[n, n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n, k] = M[n-1, k-1]+(k+1)*(k+2)*M[n-1, k+1]
return M
A059419_triangle(9) # Peter Luschny, Sep 19 2012
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Jan 30 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Feb 01 2001
STATUS
approved