login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024283 E.g.f. (1/2) * tan(x)^2 (even powers only).
(Formerly N1950)
8
0, 1, 8, 136, 3968, 176896, 11184128, 951878656, 104932671488, 14544442556416, 2475749026562048, 507711943253426176, 123460740095103991808, 35125800801971979943936, 11559592093904798920736768, 4356981378562584648085405696, 1864703851860264785548754812928 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of cyclically reverse alternating permutations of length 2n+2, cf. A024255. - Vladeta Jovovic, May 20 2007 [Comment corrected by Fausto A. C. Cariboni, Sep 02 2020]
Related to A102573: letting T(q,r) be the coefficient of n^r in the polynomial 2^(q-n)/n times sum(k=0..n binomial(n, k)*k^q), then A024283(x) = sum(k=0..(2*x-1) T(2*x,k)*(-1)^(k+x)*2^k). See Mathematica code below. [John M. Campbell, Sep 15 2013]
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259, T(n,2).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
LINKS
Beáta Bényi, Miguel Méndez, José L. Ramírez and Tanay Wakhare, Restricted r-Stirling Numbers and their Combinatorial Applications, arXiv:1811.12897 [math.CO], 2018.
FORMULA
G.f.: (1/2)*(tan(z))^2 = (z^2/(1-z^2)/2)*(1 +2*z^2/((z^2-1)*(G(0)-2*z^2)), G(k) = (k+2)*(2*k+3)-2*z^2+2*z^2*(k+2)*(2*k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011
a(n) = (-1)^(n-1)*2^(2*n+1)*PolyLog(-2*n-1,-1) for n >= 1. - Peter Luschny, Jun 28 2012
O.g.f.: Sum_{n>=1} x^n * Product_{k=1..n} (2*k-1)^2 / (1 + (2*k-1)^2*x). - Paul D. Hanna, Feb 01 2013
G.f.: x/(Q(0)-x), where Q(k) = 1 + 2*x*(2*k+1)^2 - x*(2*k+3)^2*(1+x*(2*k+1)^2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 27 2013
a(n) ~ (2*n)! * n * 2^(2*n+3) / Pi^(2*n+2). - Vaclav Kotesovec, Aug 22 2014
a(n) = (4^(n+1)-1)*Gamma(2*(n+1))*zeta(2*(n+1))/Pi^(2*(n+1)) for n >= 1. - Jean-François Alcover, Feb 05 2016
From Peter Bala, Nov 16 2020: (Start)
a(n) = (1/2)*A000182(n+1) for n >= 1.
Conjectural o.g.f.: x/(1 + x - 9*x/(1 - 8*x/(1 + x - 25*x/(1 - 24*x/(1 + x - ... - (2*n+1)^2*x/(1 - 4*n*(n+1)*x/(1 + x - ... ))))))). (End)
a(n) = (-1)^(n-1)*PolyLog(-2*n - 1, i) for n >= 1. - Peter Luschny, Aug 12 2021
EXAMPLE
(tan x)^2 = x^2 + 2/3*x^4 + 17/45*x^6 + 62/315*x^8 + ...
G.f. = x + 8*x^2 + 136*x^3 + 3968*x^4 + 176896*x^5 + 11184128*x^6 + ...
MAPLE
A024283 := n -> `if`(n=0, 0, (-1)^(n-1)*2^(2*n+1)*polylog(-2*n-1, -1)); # Peter Luschny, Jun 28 2012
MATHEMATICA
f[n_] := -(-1)^n 2^(2 n + 1) PolyLog[-1 - 2 n, -1]; f[0] = 0; Array[f, 15, 0] (* Robert G. Wilson v, Jun 28 2012 *)
poly[q_] := 2^(q-n)/n*FunctionExpand[Sum[Binomial[n, k]*k^q, {k, 0, n}]]; T[q_, r_] := First[Take[CoefficientList[poly[q], n], {r+1, r+1}]]; Print[Table[Sum[T[2*x, k]*(-1)^(k+ x)*(2^k), {k, 0, 2*x-1}], {x, 1, 10}]]; (* John M. Campbell, Sep 15 2013 *)
a[ n_] := If[ n < 1, 0, With[ {k = 2 n + 1}, k! SeriesCoefficient[ Tan[x] / 2, {x, 0, k}]]] (* Michael Somos, Jan 21 2014 *)
a[ n_] := If[ n < 0, 0, With[ {k = 2 n}, k! SeriesCoefficient[ Tan[x]^2 / 2, {x, 0, k}]]] (* Michael Somos, Jan 21 2014 *)
a[0] = 0; a[n_] := (4^(n+1)-1)*Gamma[2*(n+1)]*Zeta[2*(n+1)]/Pi^(2*(n+1)); Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 05 2016 *)
PROG
(PARI) {a(n)=polcoeff( sum(m=1, n, x^m*prod(k=1, m, (2*k-1)^2/(1+(2*k-1)^2*x +x*O(x^n))) ), n)} \\ Paul D. Hanna, Feb 01 2013
CROSSREFS
Cf. A000182, A102573. A diagonal of A059419.
Sequence in context: A036915 A238465 A049211 * A134053 A136472 A145404
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane. This sequence was in the 1973 "Handbook", but was then omitted from the database. Resubmitted by R. H. Hardin. Entry revised by N. J. A. Sloane, Jun 12 2012
EXTENSIONS
Extended and signs tested Mar 15 1997.
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 18:56 EDT 2024. Contains 375910 sequences. (Running on oeis4.)