The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024255 a(0)=0, a(n) = n*E(2n-1) for n >= 1, where E(n) = A000111(n) are the Euler (or up-down) numbers. 5
0, 1, 4, 48, 1088, 39680, 2122752, 156577792, 15230058496, 1888788086784, 290888851128320, 54466478584365056, 12185086638082228224, 3209979242472703787008, 983522422455215438430208, 346787762817143967622103040, 139423404114002708738732982272 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Number of cyclically alternating permutations of length 2n. Example: a(2)=4 because we have 1324, 1423, 2314, and 2413 (3412 is alternating but not cyclically alternating).
LINKS
N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001-2003.
N. D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573.
G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30.
FORMULA
a(n) = 2^(n-1)*(2^n-1)*|B_n|.
E.g.f.: tan(x)*x/2 (even part).
a(n) = (2*n)!*Pi^(-2*n)*(4^n-1)*Li{2*n}(1) for n > 0. - Peter Luschny, Jun 29 2012
G.f.: Q(0)*x/(1-4*x), where Q(k) = 1 - 16*x^2*(k+2)*(k+1)^3/( 16*x^2*(k+2)*(k+1)^3 - (1 - 8*x*k^2 - 12*x*k -4*x)*(1 - 8*x*k^2 - 28*x*k -24*x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 23 2013
a(n) = A009752(n)/2. - Alois P. Heinz, Aug 17 2021
a(n) = (-1)^n*2*n*PolyLog(1 - 2*n, -i). - Peter Luschny, Aug 17 2021
MAPLE
a := n -> (-1)^n*2^(2*n-1)*(1-2^(2*n))*bernoulli(2*n); # Peter Luschny, Jun 08 2009
MATHEMATICA
nn = 30; t = Range[0, nn]! CoefficientList[Series[Tan[x]*x/2, {x, 0, nn}], x]; Take[t, {1, nn, 2}]
Table[(-1)^n 2 n PolyLog[1 - 2 n, -I], {n, 0, 19}] (* Peter Luschny, Aug 17 2021 *)
PROG
(Python)
from itertools import accumulate, islice, count
def A024255_gen(): # generator of terms
yield from (0, 1)
blist = (0, 1)
for n in count(2):
yield n*(blist := tuple(accumulate(reversed(tuple(accumulate(reversed(blist), initial=0))), initial=0)))[-1]
A024255_list = list(islice(A024255_gen(), 40)) # Chai Wah Wu, Jun 09-11 2022
CROSSREFS
Sequence in context: A138448 A071221 A198038 * A211045 A296838 A211049
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Emeric Deutsch, Jul 01 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 18:06 EDT 2024. Contains 372840 sequences. (Running on oeis4.)