The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024255 a(0)=0, a(n) = n*E(2n-1) for n >= 1, where E(n) = A000111(n) are the Euler (or up-down) numbers. 5
 0, 1, 4, 48, 1088, 39680, 2122752, 156577792, 15230058496, 1888788086784, 290888851128320, 54466478584365056, 12185086638082228224, 3209979242472703787008, 983522422455215438430208, 346787762817143967622103040, 139423404114002708738732982272 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of cyclically alternating permutations of length 2n. Example: a(2)=4 because we have 1324, 1423, 2314, and 2413 (3412 is alternating but not cyclically alternating). LINKS T. D. Noe, Table of n, a(n) for n = 0..100 N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001-2003. N. D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573. G. Kreweras, Les préordres totaux compatibles avec un ordre partiel, Math. Sci. Humaines No. 53 (1976), 5-30. FORMULA a(n) = 2^(n-1)*(2^n-1)*|B_n|. E.g.f.: tan(x)*x/2 (even part). a(n) = (2*n)!*Pi^(-2*n)*(4^n-1)*Li{2*n}(1) for n > 0. - Peter Luschny, Jun 29 2012 G.f.: Q(0)*x/(1-4*x), where Q(k) = 1 - 16*x^2*(k+2)*(k+1)^3/( 16*x^2*(k+2)*(k+1)^3 - (1 - 8*x*k^2 - 12*x*k -4*x)*(1 - 8*x*k^2 - 28*x*k -24*x)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 23 2013 a(n) = A009752(n)/2. - Alois P. Heinz, Aug 17 2021 a(n) = (-1)^n*2*n*PolyLog(1 - 2*n, -i). - Peter Luschny, Aug 17 2021 MAPLE a := n -> (-1)^n*2^(2*n-1)*(1-2^(2*n))*bernoulli(2*n); # Peter Luschny, Jun 08 2009 MATHEMATICA nn = 30; t = Range[0, nn]! CoefficientList[Series[Tan[x]*x/2, {x, 0, nn}], x]; Take[t, {1, nn, 2}] Table[(-1)^n 2 n PolyLog[1 - 2 n, -I], {n, 0, 19}] (* Peter Luschny, Aug 17 2021 *) PROG (Python) from itertools import accumulate, islice, count def A024255_gen(): # generator of terms yield from (0, 1) blist = (0, 1) for n in count(2): yield n*(blist := tuple(accumulate(reversed(tuple(accumulate(reversed(blist), initial=0))), initial=0)))[-1] A024255_list = list(islice(A024255_gen(), 40)) # Chai Wah Wu, Jun 09-11 2022 CROSSREFS Cf. A000111, A009752. Sequence in context: A138448 A071221 A198038 * A211045 A296838 A211049 Adjacent sequences: A024252 A024253 A024254 * A024256 A024257 A024258 KEYWORD nonn AUTHOR R. H. Hardin EXTENSIONS Edited by Emeric Deutsch, Jul 01 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 18:06 EDT 2024. Contains 372840 sequences. (Running on oeis4.)