The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A009764 Tan(x)^2 = sum(n>=0, a(n)*x^(2*n)/(2*n)! ). 4
 0, 2, 16, 272, 7936, 353792, 22368256, 1903757312, 209865342976, 29088885112832, 4951498053124096, 1015423886506852352, 246921480190207983616, 70251601603943959887872, 23119184187809597841473536, 8713962757125169296170811392, 3729407703720529571097509625856 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..16. FORMULA (tan(z))^2 = z^2/(1-z^2)*( 1 +2*z^2/( (z^2-1)*(G(0)-2*z^2)), G(k) = (k+2)*(2*k+3)-2*z^2+2*z^2*(k+2)*(2*k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011 (tan(z))^2 = z^2/(G(0)+z^2) where G(k) = (k+1)*(2*k+1)-2*z^2+2*z^2*(k+1)*(2*k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Dec 15 2011 G.f. A(x)=-1 + 1/G(0) where G(k)= 1 - (k+1)*(k+2)*x/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Aug 10 2012 G.f.: 1/G(0)-1 where G(k) = 1 - 2*x*(2*k+1)^2 - x^2*(2*k+1)*(2*k+2)^2*(2*k+3)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 13 2013 G.f.: (1/G(0)-1)*sqrt(-x), where G(k)= 1 - sqrt(-x) - x*(k+1)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, May 29 2013 G.f.: Q(0) -1, where Q(k) = 1 - x*(k+1)*(k+2)/( x*(k+1)*(k+2) - 1/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 14 2013 EXAMPLE (tan x)^2 = x^2 + 2/3*x^4 + 17/45*x^6 + 62/315*x^8 + ... MATHEMATICA With[{nn=30}, Take[CoefficientList[Series[Tan[x]^2, {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Oct 04 2011 *) CROSSREFS Essentially same as A000182. Cf. A024283, A000182. Sequence in context: A012188 A217816 A000182 * A189257 A227674 A102599 Adjacent sequences: A009761 A009762 A009763 * A009765 A009766 A009767 KEYWORD nonn,easy AUTHOR R. H. Hardin EXTENSIONS Extended and signs tested Mar 15 1997 by Olivier Gérard. More terms from Harvey P. Dale, Oct 04 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 8 01:34 EDT 2024. Contains 375749 sequences. (Running on oeis4.)